
PROGRESSIVE SOFTWARE SYSTEMS:
DYNAMIC SOFTWARE FOR A DYNAMIC WORKPLACE

Kendall O. Conrad
Air Force Research Laboratory

Wright-Patterson AFB, OH 45345
Kendall.Conrad@wpafb.af.mil

Vincent A. Schmidt
Air Force Research Laboratory

Wright-Patterson AFB, OH 45345
Vincent.Schmidt@wpafb.af.mil

ABSTRACT1
Valuable time and money are spent developing software
systems. Once a system is fielded, the operational and
work requirements frequently require additional software
changes over the life of the system, which increases
system cost and can cause unexpected delays. This paper
defines and surveys the progressive software system
(PSS), an instance of what is commonly referred to as an
evolvable software system (ESS). We describe the
fundamental characteristics of the PSS and conclude with
a discussion of PSS advantages, disadvantages, and usage
tradeoffs.

KEY WORDS
Evolvable Systems, Dynamic Software, Dynamic Work,
Progressive Software System, User Support Systems

1. Introduction

One of the biggest concerns when dealing with fielded
software systems is upgrading and managing the software
to add new and enhanced functionality as the usage
requirements and the nature of work change. The standard
technique has been to revise the source code and change
the needed areas from the code level. Software
engineering techniques have advanced enough to allow
users to modify the software directly, and even give some
software the ability to improve itself. A system of
software that is able to change on its own is commonly
referred to as an evolvable software system. While there
are many categories of evolvable software, this paper uses
the term “progressive software system” (PSS) to describe
particular characteristics of software evolvability, and
shows where the PSS perspective fits within the general
realm of evolvable software systems. We begin by
introducing several of the current technologies available
for upgrading software through the use of evolvable
techniques. After briefly looking at the current state of
evolvable software systems, we consider the major factors
of concern when creating an evolvable or progressive
software system. Finally, the paper concludes by
discussing the usefulness of progressive software systems,
and talks about PSS advantages, disadvantages, and
tradeoffs. This paper does not go into exact details of how

1 Document approved for Public Release AFRL-WS-05-1325.

to create a PSS system, but lays out guidelines and a
framework for doing so.

2. Background

Complex software systems are specified to meet specific
requirements, originally designed to support designated
aspects of work. Once coded, tested, and fielded, users
frequently discover new or unanticipated requirements
that translate to additional or modified system features
and capabilities. This also occurs as the work
requirements change over the life of the system.
Sometimes these needs can be defined by more
functionality, different interfaces, or various types of
alterations. When this happens the software developers
have to go back and make changes to the source code.
This causes a new version of the software to be developed
and tested, which typically entails a host of time
consuming and costly software engineering activities,
including testing, configuration control, and
documentation changes, in order for a new version to be
produced and released back to the end user. This
“upgrade” process often requires users to prioritize the
enhancements according to time or monetary constraints,
and can result in a modified system that still lacks parts of
the needed functionality. The development process itself
can also be a burden to the end users, since they may have
to wait for long periods of time (sometimes a year or
more) while the developers finish and test the changes [1].
But what if the software could progress over time without
a need for substantial developer intervention? What if the
software could improve itself by adding new
functionality, such as the ability to process data faster, or
possibly even have a different visual appearance? That is
the conceptual basis of evolvable software systems.

The costs (in time and money) involved in having custom
software professionally developed and modified are
traditionally considered to be characteristic within the
software development community. Research has
continued in areas for speeding up software upgrades and
finding where software updates are needed [2], but these
techniques are mainly intended to address the initial
design of the system and its maintenance by trained
professional software developers. The useful life of the
software could be increased, and the overall life cycle cost

467-800 383

kirk

potentially decreased, if some modifications could be
made by the end user or automatically by the software.
Conceptual models for these modifications have been
biologically inspired, seen in areas such as evolutionary
algorithms. Evolutionary algorithms were invented in the
1960s, but weren’t very practical until about the 1990s
when computers had become advanced enough to use
them [3]. With such methods, a system automatically
changes itself to find the best possible solution. Since the
best solution is not known from the start, the system tests
various alternatives. These evolvable systems keep track
of the various ideas tried, gravitating toward the most
viable solution, and recreate the system based on the best
results. These systems continue to evolve over time until
all possibilities have been tried or trial limits have been
reached.

There are various categories (perspectives) of evolvable
software systems (ESS), based on evolutionary goals and
techniques used to achieve the evolutionary capabilities,
and the degree to which the system evolves. In general, a
full ESS is typically considered to be a software system
capable of evolving autonomously, without direct inputs
from a user. It is able to advance and evolve completely
on its own. Software systems based on this model will
generally be able to create complex and innovative
designs, and are able to run independently once started.
Clearly, such a system takes much longer to create and
validate than a traditional software design. These software
systems might require a supercomputer for execution.

Another perspective on ESS is the morphing system [4].
This type is based on operating system and compiler
technology designed to support continued improvements
by collecting and managing profile information. Here, the
goal is re-optimizing a program during execution. This
style of system allows for a low execution overhead and is
able to integrate optimization changes without requiring
alterations to source code. Real-time modifications are
made in the background without user intervention. In
addition, these adjustments are generally based on user
profiles and are rather limited, only useful for simple
changes that impact a single user. Although morphing
systems evolve, they do not support modifying and
updating user interfaces or adding to system functionality.

Self-evolving software systems (SESS) are another
perspective. The creators of the SESS concept say it is
“capable of automatically detecting when changing
external circumstances or internal conditions can be better
handled by alternative software modules and able to
dynamically swap these modules into place” [5]. This
type of system’s strength lies in its ability to maintain
itself without intervention from the user by using
swappable software modules that allow for reasonably
complex changes to be made to the system. The modules
that support this system need to be predetermined, making
overall changes limited. Since the creation of the self-
evolving system is complex, there must also be very

reliable self-testing procedures to ensure that available
modules do not deteriorate system performance.

A reconfigurable software system (RSS), unlike other
techniques described here, is more familiar to most
contemporary computer users, and is much simpler to
implement. The RSS is a software system that allows for
users to make cosmetic and basic adjustments to the
software. Since the allowed changes are primarily
cosmetic and don’t impact overall functionality, these
systems are generally straightforward for end-users to
employ and much easier for software developers to create.
On the other hand this system is very limited in what can
be modified, and all possible changes must be
predetermined. Examples include software that allows
users to select default font, colors, and menu options. The
RSS is the lowest and most basic form of ESS.

Another perspective to ESS is interactive evolutionary
computing (IEC), in which software modifications are
identified by the system. Here, the human user provides
the fitness function. This system design is most useful
when the form of the fitness function is not known ahead
of time or cannot be determined by the computer. These
systems may identify changes automatically, but rely on
direct human interaction to decide if each and every
change should be implemented. For example, the system
may suggest a change if the user finds it to be visually
appealing. Multiple users can concurrently participate in
making these evaluations. A significant drawback of IEC
techniques is that the number of evaluation functions is
limited by user fatigue, since human evaluation is slow
and expensive.

End-user development (EUD) is an ESS technique that
allows users and power-users to create or modify software
using built-in macro functions and capabilities [6]. This
permits users to modify applications as desired,
encouraging social creativity and innovation [7]. EUD
takes advantage of meta-design, which addresses the
problems of closed systems. Even though meta-
modifications are available, updates and new functionality
may be limited, and the training involved in enhancing
some of these systems can be quite extensive and costly.

The final perspective this paper looks at is progressive
software systems (PSS). The PSS is a software system in
which incremental low impact changes are made
autonomously by the system, but the user drives the high-
impact changes. In this system, capabilities could be
provided in the form of a service using local or remote
software agents. This architectural approach makes a PSS
easier to implement than a EUD system, and does not
require explicit training for its users. New additions to
system functions could be incrementally added using
upgrades from the service agents. Although these agents
can provide the capability for the user to make low-risk
changes, designing agents to do more complex changes to
the system will be much tougher to produce. The term

384

“progressive software systems” is also used by other
groups [8], [9]. Their usage of this terminology seems
comparable with the usage in this paper.

The long development cycle of new software, coupled
with the dynamic nature of work (changing of
requirements once a system is fielded) makes it appealing
to extend the useful lifetime of software systems with
approaches that minimize formal developer involvement
and maximize end-user input to changing needs. Thus,
our goal is to determine the architecture for a software
system whereby the system can integrate low-risk
changes, but the user can specify and initiate changes that
add new or modified functionality, all without the need to
undertake a major software redevelopment effort.
Identification of the ESS perspective that best meets this
goal is an initial step to successfully implementing such
systems.

From the definitions of various types of ESS, the PSS is
probably the best overall fit. This is because most
significant software changes will be driven by end-user
request, while the system autonomously integrates the less
significant changes. Also, PSS allows for adapting to
changing circumstances in the work that the user is doing.
The software we desire to create follows more of a
progressive change than an evolutionary change, though
both are very closely related. Both alter the system for the
better, advancing the current system into a superior
system. The biggest difference is that almost all changes
are autonomously initiated and completed by the system
in fully evolvable systems, but progressive software
systems rely on the user to initiate high-risk changes and
only make the lower risk changes autonomously. The
remainder of this paper highlights our ideas of how PSS
concepts support evolvable system design.

3. Issues of PSS

The issues involved in the design of a progressive
software system need to be considered early in the design.
PSS software has all of the same components as a regular
software system, but also contains additional components
that allow it to grow and progress. Some of the key
features include:

• Identifying when the user wants to upgrade the
system.

• Supplying the best design for the upgrade or
supplying choices of good designs.

• Implementing the desired upgrade.
• Having a way to revert to a previous state or undo a

progression.
• Checking the stability of the software; making sure

the system performance hasn’t degraded.

A progressive software system can only advance to a
point before a programmer is needed again to make more

permanent upgrades or bring the system up to date with
newer technologies. Programmers ultimately have the
most control over the system allowing them to make
much more complex changes to software than a PSS can
achieve on its own. Many of these changes can be made
incrementally and modularly using system agents.
Technical feasibility can also be an issue: creating a PSS
is not common or easy to develop. Experienced software
programmers are needed to consider the design and
implementation issues. Finally, there may be some
features that the PSS cannot accomplish without a
significant rewrite. Identifying these issues in the early
stages of design is a risk-mitigating strategy.

4. PSS Break Down

Examining the progressive software system at a more
detailed perspective gives us a breakdown of how it
works. The main PSS components we consider make a
progressive software system are:

• Self-testing - Checks if a change in the system would
be harmful to the system itself.

• Self-maintaining - Manage changes made to the
system.

• Evolve-ability - The software system itself has the
ability to implement changes rather than needing a
programmer.

• Undo Ability - Allows the user to return to a previous
system state.

In addition to this breakdown, Figure 1 depicts orthogonal
views of PSS component design (capabilities, patterns,
and implementation techniques). Although there is not a
specific technique or mechanism we currently suggest
when pursuing PSS designs, examining a PSS from each
of these views helps to ensure both completeness and
expandability in system design. The following sections
give examples of the contents of these views.

Figure 1: Using PSS Orthogonally

385

4.1. PSS Capabilities

Listed here are just some of the possible uses that that a
PSS could provide for software:

• Optimization of tasks – The system observes patterns
of user behavior and offers a pattern-oriented
solution. This type of optimization may observe that
a user types a particular phrase repeatedly in a certain
field and offer a faster and more efficient way of
inputting the data with a word completion utility. The
system may also observe the user seeking out a
particular option in a menu often and offer to place a
shortcut icon on the toolbar for them.

• Human Computer Collaboration – The system
realizes humans and computers have complementary
strengths and weaknesses. Computers do
computations very quickly in comparison to humans,
whereas when it comes to creativity and aesthetics
the human makes decisions more rapidly and
effectively. The system can offer to help with the
user’s tasks if it believes it is a task which it could do
more effectively.

• Intelligent GUI – The GUI may require changes over
time to accommodate the changing nature of user
work. The system observes operator behavior and
makes changes accordingly to the interface to allow
the user to more effectively do their work.

• User-Defined Functions – Allows for user-created
functions to be added to the software. There may be
an existing library of functions, but with the ability
for users to add their own defined functions to the
list.

4.2. PSS Patterns

When considering some of the different PSS capabilities,
some patterns or categories seem to emerge. These
patterns can be developed into a patterns library,
facilitating a more complete and mature software system
design. A patterns library is a set of designs that have
been proven in prior designs and can be applied to a
multiple number of situations as a solution. Example
generic patterns include:

• Task Optimization – Speeds work progress and
improves reliability.

• User Workload Reduction – Reduces workload by
making changes in the system to remove burden from
the user.

• Code Stability - Ensures software code does not
degrade or lose reliability/stability.

• Graphical User Interface - Allows users to make
modifications to look and feel of the system.

• Functional Changes - Allows user to make
modifications to specific functionality.

Multiple patterns can be used in solving the same
situation: optimizing a task can be at least partly solved
using the Tasks Optimization, Graphical User Interface,
Functional Changes, or User Workload Reduction pattern.
These generic patterns can be used to partially describe
system design, without committing too much to
implementation details.

4.3. PSS Implementation Techniques
A progressive software system can be implemented using
a variety of techniques. This partial list highlights several
methods, which are not specific to PSS. However, all of
these methods can be used to make allowances for
progressive software improvements.

• Patterns Library – Having a set of pre-tested
GUI/functionality templates that the software has
access to for creating new functions or new displays.

• Profile driven – The system acquires data from the
user as they use the software, watching for patterns
and analyzing the data to help optimize work.

• DLLs – Dynamic Link Library contains functions
and other information, which can be updated for the
software to use as needed. May be implemented by
end users or administrators depending on design
needs.

• Plug-ins – Would allow for adding new functionality
to existing software and does not require the software
to be recompiled.

• Macros – Scripted steps for accomplishing a task.
Macros may be too sophisticated for casual end users
to implement on their own, so an administrator or
power user may be needed to design them.

• Agents – An agent acts at a near administrative level
overlooking systems. Implementing a subscription-
based service allows a user to subscribe for desired
updates.

4.4. Pros and Cons of the PSS

There are benefits and disadvantages of designing and
using a progressive software system. The most distinct
PSS advantage is that the useful lifetime of the system is
increased due to built-in extensibility. This means that
those using PSS software can expect to amortize the
overall cost of the software of its extended lifetime,
without taking it offline for upgrades. The system’s users
will have more power and control over their software and
its functionality, which ultimately creates a healthier work
environment [10].

Since a PSS is able to gain new functionality, this makes
it more valuable to the users and keeps them from having
to find alternative ways of accomplishing their work (i.e.
using a separate spreadsheet or document editor to keep
track of data). PSS allows for system enhancements as the
nature of work changes over time. For example, if a data
feed needs to be updated or is no longer available, the

386

system can be easily modified to locate and use a new
data feed. A PSS will be able to allow many such changes
to be made, thus allowing the software to perform
properly.

There are also disadvantages to using a PSS. The degree
of flexibility built into progressive software systems is
expected to cost more in development time and money
due to increased system complexity, even though the
useful lifetime of the software should bring the overall
system cost down. Development efforts should improve
as the practices involved in developing PSS advance,
reducing this cost.

One of the added PSS design requirements is deciding
which users will have the ability to make changes to
different aspects of the software. Giving every user the
ability to change all aspects could create an unstable
software environment, potentially preventing systems
from communicating properly. Addressing this issue
increases the complexity of the design phase. This
problem is essentially a version of the multi-level security
situation that must be resolved in the Air Force’s Network
Centric Warfare environments.

Also, the design must provide a way for the system to
ensure that changes being made do not reduce the
integrity of the overall system. Whether through tests or
system constraints, the design must ensure the integrity of
the system through a range of continuous changes.
Designing these tests will add time and complexity to the
development process and will be vital for PSS success.
This is an instance where a patterns library would be very
helpful allowing designers to use “tried and true” designs

rather than spending time creating new ones that need
testing.

Finally, there may be several copies of a certain PSS
existing in many locations. When this occurs, it will be
important to maintain a strict configuration management
mechanism to track and link related changes in sibling
PSS instances.

5. Making Sense of Using PSS

The progressive software system strives to automate the
low-risk modifications, while allowing the human user to
initiate and decide the high-risk changes. Figure 2
indicates a notional view of the tradeoffs associated with
a range of progression types. The graph displays the
complexity of the modification along the x-axis, with
simple modifications occurring at the left end, and
nontrivial changes on the right. The y-axis shows the
expected likelihood of a modification. The diagonal line
indicates our rough expectation that the casual end-user
will be interested in simple modifications in a much
greater number than nontrivial changes. The strict linear
relation shown is for visual guidance only. We’ve mapped
the anticipated complexity of some of the systems
discussed early in the paper onto the x-axis for reference.

The graph also presumes that the simpler modifications
are expected to be low-risk changes with minimal impacts
on functionality and testing. Such changes might include
screen format changes or the added display of an existing
database element onto the screen. Similarly, we would not
expect very many high-risk changes to occur throughout

Reconfigurable Evolvable Progressive End-User
Development

•High risk

•New database entries

•Complex complications

•Significant testing impact

Simple Nontrivial

•Low risk

•Add visual field

•Simple reformatting

•No testing impact

•Intermediate risk

•Combine existing data fields

•Equations and limit comparisons

•Some testing impact expected

Anticipated Complexity
Low

High

Expected
likelihood of
occurrence

Figure 2: Usability of PSS

387

the system’s lifetime. Such changes would be complex
and have an extreme impact on functionality and testing.
High-risk changes might include the addition of new
database fields or a new visualization of data. A lifetime
of intermediate-level changes is to be expected, with
some impact on functionality and testing. These changes
might include bounded calculations or the combination of
existing database entries.

There have not been enough data taken from software
systems to create a more detailed graph than the one in
Figure 2. The graph gives the impression that these trade-
offs are exactly correlated to one another. Though this is
not likely true, it is believed that there is a strong
correlation between tradeoffs. As a system resembles an
ESS more and more, the design complexity will increase,
and so will the associated risks. (When referring to risks,
this means the different risks that arise during design such
as costs, security, time, manpower, etc.) The graph
provides a general understanding of the trade-offs and
shows how they interact.

At the left end of the PSS spectrum graph, a system is
more of a reconfigurable software system (RSS) where
the techniques used are very basic. At the right end of the
spectrum are fully evolvable software systems (ESS),
representing systems such as NASA’s evolvable system
that creates antennas independently [3]. The graph
suggests a designer or user is more likely to consider
modifications that are closer to the RSS side rather than
the ESS side of the spectrum. Despite this tendency, the
PSS will support the full range of operations.

6. Conclusion

The progression of this paper has shown the reasons for
the emergence of software systems that have the ability to
be improved without the explicit aid of software
designers. We have surveyed evolvable software systems,
and distinguished the differences between various types
of these systems. We have also examined some of the
possible implementation techniques that a designer could
use in order to achieve a PSS. The paper broke down PSS
into its constituent parts and looked at each in detail,
finding out what makes up a PSS.

Within the breakdown of the PSS several capabilities
were mentioned that can be accomplished using a PSS,
such as the user defined functions, intelligent GUI, etc.
Design patterns identified were task optimization, code
stability, graphical user interface, functional changes, and
reduce user workload. We also reviewed several PSS
implementation techniques. These included patterns
library, profile driven, DLLs, plug-ins, macros, post-
compilation, and agents. These orthogonal views
constitute different ways of looking at PSS. The key idea
behind this orthogonal layout is that there is no set way of
creating a PSS; it is open to creativity and does not

constrain the designer. The PSS concept is not intended to
be a new design methodology of architecture.

Progressive software systems have existed for some time
now, and as more software is developed with the PSS
ideal in mind, patterns will become more clear and
detailed. Additionally, as software technology grows new
implementation techniques will arise that will allow PSS
to be more easily created and be given more power.

Research into applying PSS concepts to existing software
is one of the next goals. This will enable current non-PSS
systems to be enriched with the new ideas created by PSS.
PSS seems to be the current trend in software
development. This trend may not be called PSS by
everyone, but the ideas are still be the same. The world
needs dynamic software for the dynamic work place.

References

[1] Roth, E., Scott, R Deutsch, S., Kuper, S., Schmidt, V.,
Stilson, M., Wampler, J. (2005). Evolvable Work-
Centered Support System for Command and Control:
Creating Systems Users Can Adapt to Meet Changing
Demands. To appear in 2006 Special Issue of Ergonomics
on Command and Control.
[2] IVA (2003). Instability Visualization and Analysis
Proposal. UCSC Engineering.
www.soe.ucsc.edu/research/labs/grase/iva/
[3] Evolvable Systems Group (2004). Evolvable Systems.
NASA AMES Research Center,
www.arc.nasa.gov/exploringtheuniverse-
evolvablesystems.cfm
[4] Zhang, X., Wang, Z., Gloy, N., Chen, J., Smith, M.
(1997). System Support for Automatic Profiling and
Optimization. Proc. of the 16th Symp. on OS Principles.
[5] Dellarocas, C., Klein, M., Shrobe, H. (1998) An
Architecture for Constructing Self-Evolving Software
Systems. Proc. of the 3rd International Workshop on
Software Architecture.
[6] Fischer, G., Giaccardi, E. (2004) Meta-Design: A
Framework for the Future of End-User Development.
Kluwer Academic Publishers, Dordrecht, Netherlands.
[7] Fischer, G., Scharff, E. (2000). Meta-Design: Design
for Designers. Symposium on Designing Interactive
Systems. ACM Press, New York, NY.
[8] Horizon Business Services (2004).
www.caterease.com
[9] Xpient Solutions (2004). http://www.xpient.com
[10] Israel, B. A., House, J. S., Schurman, S. J., Heaney,
C., & Mero, R. P., The relation of personal resources,
participation, influence, interpersonal relationships and
coping strategies to occupational stress, job strains and
health: A multivariate analysis. Work & Stress, 3, 1989,
163-194.

388

