Proceedings of the Ninth IASTED International Conference
SOFTWARE ENGINEERING AND APPLICATIONS
November 14-16, 2005, Phoenix, AZ, USA

PROGRESSIVE SOFTWARE SYSTEMS:
DYNAMIC SOFTWARE FOR A DYNAMIC WORKPLACE

Kendall O. Conrad
Air Force Research Laboratory
Wright-Patterson AFB, OH 45345
Kendall.Conrad@wpatfb.af.mil

ABSTRACT!

Valuable time and money are spent developing sofwa
systems. Once a system is fielded, the operatiandl
work requirements frequently require additionaltwafe
changes over the life of the system, which increase
system cost and can cause unexpected delays. apés p
defines and surveys the progressive software system
(PSS), an instance of what is commonly referredst@n
evolvable software system (ESS). We describe the
fundamental characteristics of the PSS and conakitie

a discussion of PSS advantages, disadvantagesisagéd
tradeoffs.

KEY WORDS
Evolvable Systems, Dynamic Software, Dynamic Work,
Progressive Software System, User Support Systems

1. Introduction

One of the biggest concerns when dealing with &eld
software systems is upgrading and managing thevacdt

to add new and enhanced functionality as the usage
requirements and the nature of work change. Thelatd
technique has been to revise the source code arjeh
the needed areas from the code level. Software
engineering techniques have advanced enough tw allo
users to modify the software directly, and everegieme
software the ability to improve itself. A system of
software that is able to change on its own is coniyno
referred to as an evolvable software system. Whidee

are many categories of evolvable software, thigpapes

the term “progressive software system” (PSS) tauiles
particular characteristics of software evolvabijlitgnd
shows where the PSS perspective fits within theegdn
realm of evolvable software systems. We begin by
introducing several of the current technologiesilakte

for upgrading software through the use of evolvable
techniques. After briefly looking at the currenatst of
evolvable software systems, we consider the majtofs

of concern when creating an evolvable or progressiv
software system. Finally, the paper concludes by
discussing the usefulness of progressive softwaiems,

and talks about PSS advantages, disadvantages, and
tradeoffs. This paper does not go into exact detdihow

! Document approved for Public Release AFRL-WS-055132

467-800 383

Vincent A. Schmidt
Air Force Research Laboratory
Wright-Patterson AFB, OH 45345
Vincent.Schmidt@wpafb.af.mil

to create a PSS system, but lays out guidelinesaand
framework for doing so.

2. Background

Complex software systems are specified to meetifapec
requirements, originally designed to support destigh
aspects of work. Once coded, tested, and fieldsdrsu
frequently discover new or unanticipated requiretmen
that translate to additional or modified systemtuess

and capabilities. This also occurs as the work
requirements change over the life of the system.
Sometimes these needs can be defined by more
functionality, different interfaces, or various &g of
alterations. When this happens the software deeetop
have to go back and make changes to the source code
This causes a new version of the software to beldped

and tested, which typically entails a host of time
consuming and costly software engineering actwijtie
including testing, configuration control, and
documentation changes, in order for a new versiobet
produced and released back to the end user. This
“upgrade” process often requires users to priaritiae
enhancements according to time or monetary conssrai
and can result in a modified system that still taplkrts of

the needed functionality. The development procesesfi

can also be a burden to the end users, since thgyhave

to wait for long periods of time (sometimes a year
more) while the developers finish and test the geanl].

But what if the software could progress over timthaut

a need for substantial developer intervention? \ifithe
software could improve itself by adding new
functionality, such as the ability to process dater, or
possibly even have a different visual appearandef iB

the conceptual basis of evolvable software systems.

The costs (in time and money) involved in havingtom
software professionally developed and modified are
traditionally considered to be characteristic withthe
software development community. Research
continued in areas for speeding up software upgrade
finding where software updates are needed [2]tege
techniques are mainly intended to address theainiti
design of the system and its maintenance by trained
professional software developers. The useful lifehe
software could be increased, and the overall fdeccost

has

kirk

potentially decreased, if some modifications cobiel
made by the end user or automatically by the soéiwa
Conceptual models for these modifications have been
biologically inspired, seen in areas such as eigiaty
algorithms. Evolutionary algorithms were inventedthe
1960s, but weren’t very practical until about th@9as
when computers had become advanced enough to use
them [3]. With such methods, a system automatically
changes itself to find the best possible solutiince the
best solution is not known from the start, the exystests
various alternatives. These evolvable systems kexk

of the various ideas tried, gravitating toward test
viable solution, and recreate the system basethehést
results. These systems continue to evolve over tinig

all possibilities have been tried or trial limitaye been
reached.

There are various categories (perspectives) ofvatts
software systems (ESS), based on evolutionary goals
techniques used to achieve the evolutionary cafabil
and the degree to which the system evolves. Inrgéree
full ESS is typically considered to be a softwaystem
capable of evolving autonomously, without direqblts
from a user. It is able to advance and evolve cetapl
on its own. Software systems based on this modil wi
generally be able to create complex and innovative
designs, and are able to run independently oncéedta
Clearly, such a system takes much longer to craatke
validate than a traditional software design. Thexfevare
systems might require a supercomputer for execution

Another perspective on ESS is the morphing sys#m [
This type is based on operating system and compiler
technology designed to support continued improvasen
by collecting and managing profile information. Eethe
goal is re-optimizing a program during executioisT
style of system allows for a low execution overhaad is
able to integrate optimization changes without neog
alterations to source code. Real-time modificatians
made in the background without user interventiam. |
addition, these adjustments are generally basedsen
profiles and are rather limited, only useful fompie
changes that impact a single user. Although morgphin
systems evolve, they do not support modifying and
updating user interfaces or adding to system fanatity.

Self-evolving software systems (SESS) are another
perspective. The creators of the SESS concepttsay i
“capable of automatically detecting when changing
external circumstances or internal conditions caubétter
handled by alternative software modules and able to
dynamically swap these modules into place” [5]. sThi
type of system’s strength lies in its ability to intain
itself without intervention from the user by using
swappable software modules that allow for reasgnabl
complex changes to be made to the system. The e®dul
that support this system need to be predetermmading
overall changes limited. Since the creation of siedf-
evolving system is complex, there must also be very

384

reliable self-testing procedures to ensure thatlabla
modules do not deteriorate system performance.

A reconfigurable software system (RSS), unlike pthe
techniques described here, is more familiar to most
contemporary computer users, and is much simpler to
implement. The RSS is a software system that allimws
users to make cosmetic and basic adjustments to the
software. Since the allowed changes are primarily
cosmetic and don't impact overall functionality,ese
systems are generally straightforward for end-ugers
employ and much easier for software developersdate.

On the other hand this system is very limited iratvtan

be modified, and all possible changes must be
predetermined. Examples include software that alow
users to select default font, colors, and menwaoptiThe
RSS is the lowest and most basic form of ESS.

Another perspective to ESS is interactive evolwign
computing (IEC), in which software modificationsear
identified by the system. Here, the human user igesv
the fitness function. This system design is mosfuls
when the form of the fitness function is not knoahead
of time or cannot be determined by the computees€h
systems may identify changes automatically, but o#l
direct human interaction to decide if each and ever
change should be implemented. For example, thersyst
may suggest a change if the user finds it to baallis
appealing. Multiple users can concurrently partitéin
making these evaluations. A significant drawbackEG
techniques is that the number of evaluation fumstics
limited by user fatigue, since human evaluatiorslswv
and expensive.

End-user development (EUD) is an ESS technique that
allows users and power-users to create or modffyace
using built-in macro functions and capabilities. [Ghis
permits users to modify applications as desired,
encouraging social creativity and innovation [7UE
takes advantage of meta-design, which addresses the
problems of closed systems. Even though meta-
modifications are available, updates and new fonelity

may be limited, and the training involved in enhHagc
some of these systems can be quite extensive atigh.co

The final perspective this paper looks at is pregire
software systems (PSS). The PSS is a softwarensyste
which incremental low impact changes are made
autonomously by the system, but the user drivesitjie-
impact changes. In this system, capabilities coloéd
provided in the form of a service using local omoge
software agents. This architectural approach makeSs
easier to implement than a EUD system, and does not
require explicit training for its users. New adiulils to
system functions could be incrementally added using
upgrades from the service agents. Although thesatag
can provide the capability for the user to make-t@k
changes, designing agents to do more complex change
the system will be much tougher to produce. Thenter

“progressive software systems” is also used by rothe
groups [8], [9]. Their usage of this terminologyes®s
comparable with the usage in this paper.

The long development cycle of new software, coupled
with the dynamic nature of work (changing of
requirements once a system is fielded) makes ita@pmm

to extend the useful lifetime of software systemithw
approaches that minimize formal developer involveme
and maximize end-user input to changing needs. ,Thus
our goal is to determine the architecture for avearfe
system whereby the system can integrate low-risk
changes, but the user can specify and initiate gdmthat
add new or modified functionality, all without tineed to
undertake a major software redevelopment effort.
Identification of the ESS perspective that best ts\élais
goal is an initial step to successfully implemegtsuch
systems.

From the definitions of various types of ESS, tI&SHs
probably the best overall fit. This is because most
significant software changes will be driven by erser
request, while the system autonomously integrde $etss
significant changes. Also, PSS allows for adaptiag
changing circumstances in the work that the usdoisg.
The software we desire to create follows more of a
progressive change than an evolutionary changeigtho
both are very closely related. Both alter the syster the
better, advancing the current system into a superio
system. The biggest difference is that almost ladinges
are autonomously initiated and completed by theesys

in fully evolvable systems, but progressive sofevar
systems rely on the user to initiate high-risk cdemand
only make the lower risk changes autonomously. The
remainder of this paper highlights our ideas of He8S
concepts support evolvable system design.

3. Issuesof PSS

The issues involved in the design of a progressive
software system need to be considered early idékan.
PSS software has all of the same components agutare
software system, but also contains additional corapts
that allow it to grow and progress. Some of the key
features include:

* Identifying when the user wants to upgrade the
system.

* Supplying the best design for the upgrade or
supplying choices of good designs.

» Implementing the desired upgrade.

e Having a way to revert to a previous state or uado
progression.

e Checking the stability of the software; making sure
the system performance hasn't degraded.

A progressive software system can only advance to a
point before a programmer is needed again to make m

385

permanent upgrades or bring the system up to dake w
newer technologies. Programmers ultimately have the
most control over the system allowing them to make
much more complex changes to software than a PBS ca
achieve on its own. Many of these changes can lmema
incrementally and modularly using system agents.
Technical feasibility can also be an issue: cregatirPSS

is not common or easy to develop. Experienced soéw
programmers are needed to consider the design and
implementation issues. Finally, there may be some
features that the PSS cannot accomplish without a
significant rewrite. Identifying these issues ire tharly
stages of design is a risk-mitigating strategy.

4. PSS Break Down

Examining the progressive software system at a more
detailed perspective gives us a breakdown of how it
works. The main PSS components we consider make a
progressive software system are:

» Self-testing- Checks if a change in the system would
be harmful to the system itself.

» Self-maintaining - Manage changes made to the
system.

» Evolve-ability - The software system itself has the
ability to implement changes rather than needing a
programmer.

» Undo Ability - Allows the user to return to a previous
system state.

In addition to this breakdown, Figure 1 depict$iogonal
views of PSS component design (capabilities, padter
and implementation techniques). Although theredts an
specific technique or mechanism we currently suggges
when pursuing PSS designs, examining a PSS froim eac
of these views helps to ensure both completeneds an
expandability in system design. The following seas
give examples of the contents of these views.

patte™

Capabilities

Figure 1. Using PSS Orthogonally

4.1. PSS Capabilities

Listed here are just some of the possible useshbat
PSS could provide for software:

» Optimization of tasks- The system observes patterns
of user behavior and offers a pattern-oriented
solution. This type of optimization may observettha
a user types a particular phrase repeatedly imtaice
field and offer a faster and more efficient way of
inputting the data with a word completion utilityhe
system may also observe the user seeking out a
particular option in a menu often and offer to plac
shortcut icon on the toolbar for them.

* Human Computer Collaboration- The system
realizes humans and computers have complementary
strengths and weaknesses. Computers do
computations very quickly in comparison to humans,
whereas when it comes to creativity and aesthetics
the human makes decisions more rapidly and
effectively. The system can offer to help with the
user’s tasks if it believes it is a task whichautd do
more effectively.

 Intelligent GUI- The GUI may require changes over
time to accommodate the changing nature of user
work. The system observes operator behavior and
makes changes accordingly to the interface to allow
the user to more effectively do their work.

» User-Defined Functions- Allows for user-created
functions to be added to the software. There may be
an existing library of functions, but with the atyil
for users to add their own defined functions to the
list.

4.2. PSS Patterns

When considering some of the different PSS capesili
some patterns or categories seem to emerge. These
patterns can be developed into a patterns library,
facilitating a more complete and mature softwarstesy
design. A patterns library is a set of designs tmate
been proven in prior designs and can be appliea to
multiple number of situations as a solution. Exampl
generic patterns include:

e Task Optimization— Speeds work progress and
improves reliability.

» User Workload Reductior Reduces workload by
making changes in the system to remove burden from
the user.

» Code Stability- Ensures software code does not
degrade or lose reliability/stability.

» Graphical User Interface Allows users to make
modifications to look and feel of the system.

» Functional Changes- Allows user to make
modifications to specific functionality.

386

Multiple patterns can be used in solving the same
situation: optimizing a task can be at least pastijved
using the Tasks Optimization, Graphical User |atesf
Functional Changes, or User Workload Reductiorepatt
These generic patterns can be used to partiallgrithes
system design, without committing too much to
implementation details.

4.3. PSS Implementation Techniques

A progressive software system can be implementedjus

a variety of techniques. This partial list highliglseveral
methods, which are not specific to PSS. Howevérofal
these methods can be used to make allowances for
progressive software improvements.

» Patterns Library— Having a set of pre-tested
GUl/functionality templates that the software has
access to for creating new functions or new display

« Profile driven— The system acquires data from the
user as they use the software, watching for patern
and analyzing the data to help optimize work.

e« DLLs — Dynamic Link Library contains functions
and other information, which can be updated for the
software to use as needed. May be implemented by
end users or administrators depending on design
needs.

e Plug-ins— Would allow for adding new functionality
to existing software and does not require the sarftw
to be recompiled.

e Macros — Scripted steps for accomplishing a task.
Macros may be too sophisticated for casual endsuser
to implement on their own, so an administrator or
power user may be needed to design them.

* Agents— An agent acts at a near administrative level
overlooking systems. Implementing a subscription-
based service allows a user to subscribe for dksire
updates.

4.4. Pros and Cons of the PSS

There are benefits and disadvantages of designiily a
using a progressive software system. The mostndisti
PSS advantage is that the useful lifetime of thetesy is
increased due to built-in extensibility. This meahat
those using PSS software can expect to amortize the
overall cost of the software of its extended lifedi
without taking it offline for upgrades. The systsmisers

will have more power and control over their softevand

its functionality, which ultimately creates a haat work
environment [10].

Since a PSS is able to gain new functionality, thakes
it more valuable to the users and keeps them fravmb

to find alternative ways of accomplishing their wdr.e.

using a separate spreadsheet or document edilazeip
track of data). PSS allows for system enhancenantse
nature of work changes over time. For example, da&a
feed needs to be updated or is no longer availdbée,

system can be easily modified to locate and useva n
data feed. A PSS will be able to allow many sucngfes
to be made, thus allowing the software to perform

properly.

There are also disadvantages to using a PSS. Tgreale
of flexibility built into progressive software sgshs is
expected to cost more in development time and money
due to increased system complexity, even though the
useful lifetime of the software should bring theemil
system cost down. Development efforts should imgrov
as the practices involved in developing PSS advance
reducing this cost.

One of the added PSS design requirements is dgcidin
which users will have the ability to make changes t
different aspects of the software. Giving everyrube
ability to change all aspects could create an bista
software environment, potentially preventing system
from communicating properly. Addressing this issue
increases the complexity of the design phase. This
problem is essentially a version of the multi-leseturity
situation that must be resolved in the Air Fordé&work
Centric Warfare environments.

Also, the design must provide a way for the system

ensure that changes being made do not reduce the

integrity of the overall system. Whether throughktgeor
system constraints, the design must ensure thgritytef

the system through a range of continuous changes.
Designing these tests will add time and completdtyhe
development process and will be vital for PSS ssgce
This is an instance where a patterns library wdadery
helpful allowing designers to use “tried and tragsigns

rather than spending time creating new ones thatl ne
testing.

Finally, there may be several copies of a certa85 P
existing in many locations. When this occurs, itl wie
important to maintain a strict configuration managat
mechanism to track and link related changes iningbl
PSS instances.

5. Making Sense of Using PSS

The progressive software system strives to autorttete
low-risk modifications, while allowing the humaneugo
initiate and decide the high-risk changes. Figure 2
indicates a notional view of the tradeoffs asseciawith

a range of progression types. The graph displags th
complexity of the modification along the x-axis, thvi
simple modifications occurring at the left end, and
nontrivial changes on the right. The y-axis shohs t
expected likelihood of a modification. The diagotiak
indicates our rough expectation that the casuatused
will be interested in simple modifications in a rhuc
greater number than nontrivial changes. The dlirietar
relation shown is for visual guidance only. We'vapped
the anticipated complexity of some of the systems
discussed early in the paper onto the x-axis fiareace.

The graph also presumes that the simpler modifinati
are expected to be low-risk changes with minimadanots
on functionality and testing. Such changes mightuite
screen format changes or the added display of stireg
database element onto the screen. Similarly, weddnmat
expect very many high-risk changes to occur through

®ow risk ®|ntermediate risk *High risk

*Add visual field *Combine existing data fields *New database entries

*Simple reformatting *Equations and limit comparisons *Complex complications

*No testing impact *Some testing impact expected *Significant testing impact
/

High \ f

Expected
likelihood of
occurrence

Low

Simple

Anticipated Complexity

Nontrivial

Reconfigurable Progressive

End-User Evolvable
Development

Figure 2: Usability of PSS

387

the system’s lifetime. Such changes would be coxnple
and have an extreme impact on functionality antrigs
High-risk changes might include the addition of new
database fields or a new visualization of dataifétiine

of intermediate-level changes is to be expectedh wi
some impact on functionality and testing. Thesengka
might include bounded calculations or the comboratf
existing database entries.

There have not been enough data taken from software
systems to create a more detailed graph than theiron
Figure 2. The graph gives the impression that thesk-

offs are exactly correlated to one another. Thotgh is

not likely true, it is believed that there is aosiy
correlation between tradeoffs. As a system resesndhe
ESS more and more, the design complexity will inseg
and so will the associated risks. (When referrimgigks,

this means the different risks that arise duringigle such

as costs, security, time, manpower, etc.) The graph
provides a general understanding of the trade-affd
shows how they interact.

At the left end of the PSS spectrum graph, a systsem
more of a reconfigurable software system (RSS) wher
the techniques used are very basic. At the rigtitadrihe
spectrum are fully evolvable software systems (ESS)
representing systems such as NASA’s evolvable syste
that creates antennas independently [3]. The graph
suggests a designer or user is more likely to demsi
modifications that are closer to the RSS side ratihan

the ESS side of the spectrum. Despite this tendethey
PSS will support the full range of operations.

6. Conclusion

The progression of this paper has shown the reasons
the emergence of software systems that have tligydbi
be improved without the explicit aid of software
designers. We have surveyed evolvable softwaresst
and distinguished the differences between varigpsst

of these systems. We have also examined some of the

possible implementation techniques that a desigoeld
use in order to achieve a PSS. The paper broke &&@h
into its constituent parts and looked at each itaifje
finding out what makes up a PSS.

Within the breakdown of the PSS several capalilitie
were mentioned that can be accomplished using @ PSS
such as the user defined functions, intelligent Géit.
Design patterns identified were task optimizationde
stability, graphical user interface, functional nbas, and
reduce user workload. We also reviewed several PSS
implementation techniques. These included patterns
library, profile driven, DLLs, plug-ins, macros, gie
compilation, and agents. These orthogonal views
constitute different ways of looking at PSS. The ldea
behind this orthogonal layout is that there is ebvgay of
creating a PSS; it is open to creativity and does n

388

constrain the designer. The PSS concept is natdettto
be a new design methodology of architecture.

Progressive software systems have existed for songe
now, and as more software is developed with the PSS
ideal in mind, patterns will become more clear and
detailed. Additionally, as software technology gsomew
implementation techniques will arise that will ald®SS

to be more easily created and be given more power.

Research into applying PSS concepts to existingvaoé

is one of the next goals. This will enable curneon-PSS
systems to be enriched with the new ideas creatdtSis.
PSS seems to be the current trend in software
development. This trend may not be called PSS by
everyone, but the ideas are still be the same. \ildrid
needs dynamic software for the dynamic work place.

References

[1] Roth, E., Scott, R Deutsch, S., Kuper, S., SchnVv.,
Stilson, M., Wampler, J. (2005). Evolvable Work-
Centered Support System for Command and Control:
Creating Systems Users Can Adapt to Meet Changing
DemandsTo appear in 2006 Special |ssue of Ergonomics

on Command and Control.

[2] IVA (2003). Instability Visualization and Anagys
Proposal. UCsC Engineering.
www.soe.ucsc.edu/research/labs/grase/iva/

[3] Evolvable Systems Group (200&volvable Systems.
NASA AMES Research Center,
www.arc.nasa.gov/exploringtheuniverse-
evolvablesystems.cfm

[4] Zhang, X., Wang, Z., Gloy, N., Chen, J., Smiki,
(1997). System Support for Automatic Profiling and
Optimization.Proc. of the 16™ Symp. on OS Principles.

[5] Dellarocas, C., Klein, M., Shrobe, H. (1998) An
Architecture for Constructing Self-Evolving Softwear
Systems.Proc. of the 3 International Workshop on
Software Architecture.

[6] Fischer, G., Giaccardi, E. (2004) Meta-Desigh:
Framework for the Future of End-User Development.
Kluwer Academic Publishers, Dordrecht, Netherlands.

[7] Fischer, G., Scharff, E. (2000). Meta-Desigresigin

for Designers. Symposium on Designing Interactive
Systems. ACM Press, New York, NY.

[8] Horizon Business Services
www.caterease.com

[9] Xpient Solutions (2004 http://www.xpient.com
[10] Israel, B. A., House, J. S., Schurman, SH&aney,
C., & Mero, R. P., The relation of personal resesic
participation, influence, interpersonal relatiopshiand
coping strategies to occupational stress, job retraind
health: A multivariate analysi$Vork & Stress, 3, 1989,
163-194.

(2004).

