
Using Service-Oriented Architectures

for Evolvable Software Systems

Dr. Vincent A. Schmidt
Air Force Research Laboratory / HECS

2698 G Street
Wright-Patterson AFB, OH 45433

Voice: 937-255-8363; Fax: 937-255-6555
Vincent.Schmidt@wpafb.af.mil

Abstract

Evolvable Software Systems (ESS) are software sys-
tems designed to adapt to changes in usage and in the
work environment. It is especially important to build
adaptability into enterprise applications in order to
extend the lifetime and reduce the overall cost of de-
ployed software. One method worth considering is the
use of Service-Oriented Architectures (SOA), which
have become very popular for implementing business
software solutions due to their modularity and flex-
ibility. This paper presents arguments in favor of
implementing enterprise-level command and control
software systems as Evolvable Software Systems us-
ing SOA practices.1

1 Introduction

The United States Air Force continues to have an in-
terest in the science of software system development.
By conservative estimates, over fifty percent of the
cost (in money, functionality, schedule, and risk) of
fielding new systems is associated with software. To
save time, money, and related resources, it is nec-
essary to find ways of reducing the costs associated
with the software life cycle. One reasonable approach
to reduce this cost is to extend the life of deployed
systems by using technologies that allow the applica-
tions to adapt as the nature of work changes.

Various technological and methodological concepts
have been introduced as a hedge against the chang-
ing nature of software needs. One of the most pop-
ular contemporary approaches expresses the system

1This document cleared for public release by AFRL Public
Affairs, AFRL-WS-06-0282.

in terms of network-centric operations, which pro-
mote significant interoperability among loosely cou-
pled systems. This interoperability is expressed us-
ing standardized data formats and common network-
accessible repositories. Embracing net-centricity re-
duces the overhead associated with generating new
interfaces as new systems come online and expect to
share data, since specific interfaces don’t have to be
developed for each pair of data-sharing systems.

Unfortunately, even the incorporation of net-centric
concepts is often not enough. The nature of the work
and work requirements frequently evolve and change
over time. As this occurs, the existing systems be-
come obsolete, no longer supporting the work require-
ments. To postpone (or even avoid) obsolescence and
continue a productive lifecycle, software needs to be
able to adapt to support work as it changes over
time. This article investigates one promising technol-
ogy that could be employed to support such changes:
the use of Service-Oriented Architectures (SOA).

2 Background

Evolvable Software Systems (ESS) are systems ca-
pable of adapting to change in a dynamic fashion.
The umbrella defining ESS is vast, and there are
many classifications and categories of ESS. Some ESS
operate with complete autonomy, while others man-
age user-initiated changes. Evolutionary changes can
range from optimizations almost undetectable to the
user to a complete overhaul of the user interface. The
types of changes, the degree to which a user is in-
volved, and other issues define the category of ESS.
In the Cognitive Systems branch of the Air Force Re-
search Laboratory (AFRL/HECS), the Progressive

1



Software System (PSS) is the currently most appro-
priate type of ESS related to branch research. Pro-
gressive Software Systems automate the adaptation
of low-risk modifications based on software usage and
interface requirements, while encouraging the users to
initiate appropriate higher risk modifications. (Refer-
ence [5] discusses PSS in more detail.) The concepts
illustrated in this article are not specific to PSS, so
the terminology refers generically to ESS.

The desire to create evolvable software is not new;
it has existed in many forms and has been known
by various names. Some evolutionary paradigms
are intended to be fully automatic, while others
merely support generic upgrades, integrated manu-
ally. The objective has always been to create main-
tainable high-quality software that is easy and in-
expensive to modify when needed. This goal has
been attempted through ideals (code reuse, modular-
ity), software design methodologies (formal design,
agile design, object-oriented design), programming
styles (keyboard composition, complete system spec-
ification), development language (C, Java, scripting
languages, interpreted languages), and other meth-
ods. Each has met with some success. Technology
improvements continue to make evolvable software
more practical, allow new ideas to be investigated,
and regenerate and reintroduce old ideas once more.
Even with limited past success, the target of design-
ing evolvable and adaptable software remains an im-
portant goal in the software development community.

For enterprise application software2 to be effective,
it must be designed and implemented to support
the work environment. In fact, the objective of all
enterprise software should be to support the work.
(Software has historically been data-centric or user-
centric, instead of work-centric.) Software flexibility
is the key to allowing software to be used as a work
tool, versus enslaving the users to a specific software
“solution.” The intent is to produce loosely coupled,
well-integrated systems that can be easily modified or
upgraded. In an ideal environment, these upgrades
are remotely or automatically managed, or can be
performed in the field by non-technical users with-
out interrupting system usage. Traditional solutions
typically include the development and integration of
field-replaceable modular components. These compo-
nents are often explicitly coded as static (compiled)
modules, but could also be integrated as interpreted

2For our purposes, we define enterprise software in contrast
with other types of software: desktop applications, operating
systems, embedded solutions, etc. Enterprise software tends
to support a specific work domain.

operations such as macro functions or configuration
options.

Alternatively, the availability of increasingly higher
bandwidth allows the incorporation of network-
distributed solutions to software capability manage-
ment issues. Data and functionality can be distrib-
uted among local and non-local computing nodes.
This distribution need not be accomplished at a mod-
ular level: even individual components can be dis-
tributed. Distributing system operations has the
potential to promote greater flexibility in enterprise
software, since the remote components are generally
loosely coupled and can be upgraded (hardware, soft-
ware, or both) with minimal direct impact to system
configuration. This is particularly important to ESS;
components must be able to be “easily” exchanged or
enhanced without having to re-engineer and redeploy
the application.

Examples of technologies and software protocols sup-
porting various levels of distributed computing are
easy to find, and serious research in distributed, par-
allel, and real-time computing is a subculture of its
own. Low-level and platform-independent APIs in-
clude Remote Procedure Call (RPC) and Java’s Re-
mote Method Invocation (JMI). Similarly, mid-level
libraries such as PVM and MPI, and high-level pack-
ages such as the Common Object Remote Broker Ar-
chitecture (CORBA), have also been used to produce
interoperable, platform- and language-independent
software solutions. There are many other technolo-
gies that could also be used to support ESS designs
(see [6] for more examples).

These approaches can support many of the needs of
evolvable software systems. One of the most promis-
ing contemporary technologies for implementing ESS
takes advantage of Web services — Service-Oriented
Architectures (SOA).

3 Discussion

3.1 SOA Concepts

The Service-Oriented Architecture (SOA) concept
deals with the availability and presentation of re-
sources. SOA is about providing functionality and
data as independent and remotely accessible state-
less services. Services are designed to be reused, and
promote reuse. SOA-based software systems typically
take advantage of a loose coupling of separate, state-
less web services distributed across multiple comput-
ers.

2



From a computational perspective, a service-oriented
architecture relies on web services and network con-
nectivity to promote interoperability. Unlike tradi-
tional web pages, shopping baskets, and Javascript
applications, these web services are generally in-
tended for machine-to-machine interactions, and not
to the human consumer (although human-readable
interfaces are generally made available for simple test-
ing). Web services are similar to earlier distributed
capabilities advertised using Remote Procedure Call
(RPC), but with a slightly different distribution of
implementation and execution overhead3.

The popular model of SOA is divided into two seg-
ments: the directory of services and the service
providers. In theory, the enterprise application con-
nects to a unified directory to request a type of ser-
vice, and then is redirected to a machine providing
the requested type of service. In practice, no single
“grand unified” directory service has emerged; ven-
dors and service providers are promoting their own lo-
cal “unified” directory services. (From an implemen-
tation standpoint, even the specific directory service
request currently has to be embedded into the source
code, so we are not “googling” for services, but mak-
ing a specific request.)

Once a service provider is identified and the inter-
face is defined (using the Web Services Description
Language — WSDL), the enterprise application uses
the SOAP4 protocol (embedding the service request
into the HTTP protocol) to connect to the (state-
less) service provider. Both the request and response
messages are encoded using the Extensible Markup
Language (XML) and passed along within a SOAP
package. The transaction is completed with the re-
sponse is returned to the requester. Since all com-
munications are done via HTTP, only HTTP-related
security and access issues need to be resolved to sup-

3At first glance, SOA looks eerily conceptually similar to
Remote Procedure Call (RPC), a software networking and
communication technology that has been in use for a couple of
decades. Although the specifics of the protocols differ, many
aspects of these paradigms are strikingly similar. Those al-
ready familiar with RPC have a head start understanding and
integrating SOA.

The feature of SOA that sets it apart from technologies such
as RPC and Java’s RMI is the reliance of SOA on the exist-
ing ubiquitous HTTP protocol, coupled with the transfer of
data encoded as XML. This allows web services to be provided
by existing web servers. (Of course, encoding all messages
as XML also substantially increases the communications over-
head involved. This is arguably a small price to pay for flexible
enterprise software.)

4According to www.wikipedia.com, SOAP was originally
acronymic for Simple Object Access Protocol, but the acronym
has been dropped as of SOAP version 1.2, with emphasis on
object interoperability rather than mere object access.

port the communications overhead. (No additional
servers or holes in the firewall are required.)

Technologists agree that the SOA paradigm is es-
pecially well-suited for modeling and implementing
business rules. This is mainly due to the flexibility
and modularity of the code base: specific business re-
lationships and operations are implemented as small
stateless components, capable of being revised or re-
moved quickly as the need arises. Business logic is
precisely the core component of the typical enterprise
application.

3.2 SOA Deployment

Figure 1 depicts what many consider to be a typi-
cal configuration of an SOA enterprise application,
simplified to omit the directory service component.
Figure 1(A) shows the application deployment. As
shown in the figure, a portion of the application re-
mains on the user’s local machine, while one or more
remote machines host servers providing an array of
applicable web services. If the majority of the appli-
cation is provided by web services, the local compo-
nent is small and lightweight. From a software design
perspective, Figure 1(B) illustrates how integrating
SOA concepts is simply achieved through appropri-
ate protocol accesses to the web servers providing the
desired services.

The strategy for building enterprise solutions for the
US Air Force is to generate systems that not only
meet the work requirements, but are capable of dy-
namically transforming to service the changing work
environment over time. Such an Evolvable Software
System can certainly leverage SOA techniques by us-
ing services provided by the user’s local computer and
other machines on the network. Specific remote sites
and alternate systems could provide core system ca-
pabilities as modular web services. Even if the system
is designed to ensure critical capabilities are locally
available, remote web services could be designed to
meet certain communication needs, such as alerts for
upgrades and security fixes, metadata updates, and
configuration management functionality. Since web
services promote common interfaces and interoper-
ability, this type of design easily fits into the network-
centric concept.

As an example, consider an application designed
to schedule and report scheduled aircraft mainte-
nance activity, and track aircraft currently undergo-
ing maintenance. A lightweight enterprise applica-
tion might rely on a collection of web services to ob-
tain data regarding current aircraft inventory infor-

3



: Web Services : Web Services

: Local Machine

Enterprise Application

Web Server
Web Services

Web Server
Web Services

: Remote Machine

: Remote Machine

: Web Server: Web Server

: Enterprise Application

(A) Deployment Diagram (B) Object Diagram

Figure 1: Distributed SOA Configuration

mation, currently scheduled maintenance, unantici-
pated maintenance, and expected completion dates.
A different set of services might define functions, cal-
culations, and reporting capabilities that describe the
business logic. The application running on the local
machine might only be responsible for generating ap-
propriate displays based on the work requirements.
Such a configuration promotes significant flexibility
and reuse, since both the data and required compu-
tations are not coded directly into the application.
As new data sources become available, the web ser-
vices providing the dataset and business rules can be
updated dynamically to take advantage of the new
information; no site-specific software upgrades would
be required.

Although typical implementations of service-oriented
architectures use web services as the mechanism for
sharing data and functionality, it is not strictly nec-
essary to distribute the services across machines. In
many cases, a single machine could execute both the
enterprise application and the service provider, as il-
lustrated in Figure 2. The deployment diagram in
2(A) identifies a single local machine running the ap-
plication, web server, and all services. From an imple-
mentation standpoint, Figure 2(B) shows the applica-
tion communicating to the service provider using the
same protocols that would be used in a distributed
configuration. The only difference is, the centralized

configuration is completely self-contained, not requir-
ing additional computers.

Using the previous aircraft maintenance example, the
services could all be moved to the local machine to
more closely adhere to the centralized SOA configu-
ration. In this case, these services might need to be
modified to query local databases, with data tapes
loaded into local databases at scheduled intervals.
If each service implements a specific subset of busi-
ness logic for the enterprise application, these ser-
vices could be controlled as individual software com-
ponents for ease of maintenance.

3.3 SOA Advantages for ESS

Evolvable Software Systems must be designed to al-
low for a clear and efficient path supporting a progres-
sion of capability as the nature of work changes and
matures. SOA methods may play a significant role
in providing these facilities. Benefits to integrating
web-service-based SOA techniques into enterprise-
level ESS applications include, from a software en-
gineering perspective:

• Enforced modular system design — Services
are implemented as independent stateless oper-
ations. Each web service provides the solution
to a specific logical requirement. This kind of

4



Enterprise Application

: Local Machine

Web Server
Web Services

: Enterprise Application : Web Server

: Web Services

(A) Deployment Diagram (B) Object Diagram

Figure 2: Centralized SOA Configuration

layout promotes modular design. Each service
module is designed to capture a specific business
rule.

• Standardized interfaces — The interfaces devel-
oped to access web services are standardized.
Any development suite can be used to generate
an application or a new web service, as long as
the standard interfaces are adopted by the new
service.

• Language independence — There is no require-
ment to create web services using a specific com-
puter programming language. Web services can
be developed using the most appropriate lan-
guage for implementing the business logic, as
long as the inputs can be passed from the ap-
plication through the web server to the servicing
module, and the module can return the results
in the standardized format.

Service-Oriented Architectures provide an excep-
tional mechanism for supporting the evolution and
rapid responses to fast-paced changes in business
rules:

• Service reuse — Because individual services are
stateless and designed to meet specific business
logic, a library of services can be quickly built
over time across multiple servers. (The concept
of reuse is frequently raised in the software engi-
neering community, but actual reuse is often te-
dious and difficult. There is no silver bullet, but
perhaps SOA can push reuse forward.) Generic
services can be reused and streamlined. A li-
brary of common services or service patterns will

emerge as web services become more popular and
available.

• Ease of upgrading services — Modules can be
replaced, upgraded, extended, or even ignored
as business requirements change. When new
requirements are close the the original design,
existing services can be modified to meet the
new requirements. New services can be added
dynamically (ignoring existing services) if the
requirements are sufficiently different from the
original module design. Services should be
configuration-controlled to track and manage
module changes.

• Greater control of data — Business logic is
distributed among nodes, not contained locally
within the application. This means that enter-
prise data is not contained locally. The implica-
tion is that processes involving (i.e.) multi-level
security can be implemented more easily at the
enterprise application level, since modules would
not be called until login information is validated.
This limits the data and information displayed
and retained within the local application.

Web services offered through Service-Oriented Archi-
tectures also promote good technology management:

• Dynamic upgrades — Web services are executed
impulsively: that is, the service is initially in-
active, then is executed, and becomes inactive
again until another request is made. This us-
age pattern allows web service modules to be up-
graded in situ between impulses, without requir-
ing the web server or any enterprise application

5



to be explicitly recompiled or undergo extensive
restarts.

• Redundancy reduces risk — If multiple services
located on different network nodes can provide
the same business logic, one node can provide the
required solution if another becomes unavailable
or is slow to respond. Business logic redundancy
reduces the risk that a service cannot be pro-
vided, and distributes the work among multiple
nodes.

The US Air Force already has a substantial invest-
ment in adopting network-centricity in order to en-
sure interoperability among new and existing ap-
plications and data generation platforms. Since a
web-service instantiation of SOA operates using com-
monly accepted standards already on the net, inte-
grating these services into enterprise ESS applica-
tions is a logical solution that fully supports network-
centric concepts.

Service-Oriented Architectures and the use of web
services are not the only way of integrating ESS con-
cepts into enterprise software. Methods that em-
ploy modular and dynamically reconfigurable soft-
ware configurations are candidate approaches, and
the distributed computing community also offers use-
ful solutions. Certainly, Internet and web-based net-
working technologies may be ideal contributors due
to their loosely coupled structure. For example, us-
ing techniques such as AJAX5 can potentially extend
the life and reduce the lifecycle costs of C2 applica-
tions by improving usability and performance.

Regardless of the approach used to implement and
field evolvable software, there are open research issues
to be addressed. One obvious example is configura-
tion management. If enterprise software is delivered
to several sites, and each site manages its work envi-
ronment differently over time, the software will need
to adapt in different ways to support the changing
work. Even if the work across sites remains similar,
the software will certainly evolve in different ways.
When should these systems be rebaselined? How are
the different configurations managed? How are they
tracked? What is the impact of web service changes
to each site? A combination of technology and policy
must be used to resolve these research issues.

5AJAX, Asynchronous Javascript and XML, is not a
specific technology, but a technique combining aspects of
Javascript and XML to improve the user’s Web User Interface
experience by reducing the number and frequency of certain
types of time-consuming web page refreshes. This also reduces
server calls, which reduces bandwidth usage.

4 Conclusions

It is important to stress that the strategy of develop-
ing ESS solutions is not a new software development
paradigm. ESS embraces existing methods in an ef-
fort to capture best-practice approaches supporting
the development of modular, flexible, and upgrade-
able software. Established software design methods
and paradigms (object-oriented, for example) can all
be used to create evolvable systems. Ultimately, the
mission of ESS is to promote the evolution of the soft-
ware as the work requirements change, allowing the
software to continue supporting the work.

Continuing research includes facets of ESS such as
formal design expectations, configuration manage-
ment issues, practical implementation techniques, de-
velopment paradigms, and other related areas. We
anticipate that the software development community
will be enthusiastic about using evolvable design con-
cepts to generate useful, practical, and reusable soft-
ware. Truly evolvable software systems will be able
to meet the customers’ work requirements long after
the original work environment has changed beyond
recognition.

Disclaimer

The views expressed in this paper are those of the
author and do not reflect the official policy or posi-
tion of the United States Air Force, Department of
Defense, or the U.S. Government.

References

[1] David S. Alberts, John J. GArstka, Richard E.
Hayes, and David T. Signori. Understanding In-
formation Age Warfare. CCRP Publication Se-
ries, Washington, DC, USA, 2003.

[2] David S. Alberts, John J. Garstka, and Fred-
erick P. Stein. Network Centric Warfare: De-
veloping and Leveraging Information Superiority.
CCRP Publication Series, Washington, DC, USA,
1999.

[3] David S. Alberts and Richard E. Hayes. Power to
the Edge. CCRP Publication Series, Washington,
DC, USA, 2003.

[4] Simon R. Atkinson and James Moffat. The Agile
Organization: From Informal Networks to Com-
plex Effects and Agility. CCRP Publication Series,
Washington, DC, USA, 2005.

6



[5] Kendall O. Conrad and Vincent A. Schmidt. Pro-
gressive software systems: Dynamic software for
a dynamic workplace. In Proceedings of the
Ninth IASTED Conference on Software Engineer-
ing and Applications, Phoenix, AZ, November 14–
16 2005.

[6] Kendall O. Conrad and Vincent A. Schmidt.
Practical technologies for implementing evolvable
software systems. In Proceedings of the 2006
International Conference on Software Engineer-
ing Research and Practice (SERP’06), Las Vegas,
NV, 2006.

[7] Martin Fowler. Patterns of Enterprise Applica-
tion Architecture. Addison-Wesley, 2002.

7


