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Abstract

The Aggregate Feedforward Neural Network (AFFNN) is a unified connectionist architecture de-
signed to behave as if it contained K distinct neural networks. This architecture specifically learns
each attribute in the source dataset as a function of the remaining attributes, a mechanism that
promotes using the AFFNN as a platform for knowledge extraction. A decompositional extraction
algorithm is created to demonstrate the viability of obtaining rules from the successfully trained
AFFNN. A description of this generalized knowledge extraction procedure indicates how knowledge
can be extracted from the AFFNN in the form of rules. This technique is applied to AFFNNs trained
for well-understood examples (the Monks problem #2 and the Iris problem) as a basis for comparing
the results with other connectionist and non-connectionist rule extraction systems and techniques.
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1 Introduction

A combination of technological and scientific advances has fueled a resurgence of interest in using neural
networks as platforms for data mining. As a result, neural approaches to data mining are systematically
becoming more advanced and robust, while neural platforms are simultaneously gaining diversity. Such
research efforts strive to use connectionist models in many aspects of data mining, and various techniques
for extracting knowledge from neural networks have been developed.

Mining classification or association rules from quantities of data has traditionally been studied and
performed in terms of database tools and algorithms operating on very large datasets, and considerable
progress has been made [Zaki(1998)]. However, using massive databases is not a requirement for data
mining activities. Small datasets are often useful, and connectionist systems are among the numerous
methods currently employed to determine relationships contained in these datasets. Connectionist sys-
tems can generally be trained to recognize and classify the data, but are often viewed as black boxes
that only reluctantly yield up the knowledge they have learned. Thus, research involving the extraction
of knowledge from neural networks remains popular.

A report from the Neurocomputing Research Center in Queensland, Australia classifies connectionist
rule extraction into three categories: decompositional, pedagogical, and eclectic [Andrews et al.(1995) Andrews,
Diederich, and Tickle]. Decompositional approaches tend to concentrate on the internals of the neural
network, focusing on the trained network’s links and weights. Rules are established by algorithmically
tracing the desired values of the links within the network. Common decompositional methods move from
the output nodes back through the nodes in the hidden layer, integrating these results with contributions
from the input nodes. Decompositional methods are popular because they provide full visibility into the
network, lending confidence to the extracted results, and tend to be relatively straightforward to apply.



Pedagogical approaches treat the trained connectionist system as a black box. The system is used
as a mechanism for mapping inputs directly to the outputs, with no heed given to the trained network
weights. The report by Andrews et al. suggests that the trained neural network is used to generate
examples for other symbolic learning algorithms. The eclectic category is reserved for hybrid systems,
using both decompositional and pedagogical mechanisms for rule generation.

Several popular and important methods for performing rule extraction on various connectionist sys-
tems are summarized by Andrews et al., including;:

SUBSET (Decompositional) — Examine individual links meeting exceeding a node’s bias such that
other link values will not impact the results; write each of these links as a rule. Examine pairs of
links, then triples, etc. until all sets have been examined. If some link prevents the solution from
being reached, the rule is written as “if NOT n” for that link.

M-of-N (Decompositional) — Generate rules in the form “if (M of the following N antecedents
are true) then ...” Groups of similarly-weighted links are formed, with link weights all set to the
average of the group values. Groups that do not impact node activation are eliminated, and the
node biases are adjusted to reflect the new group values. The resultant group and bias data is
the source of the rules generated. It is reported that these rules are more robust with respect
to previously unseen examples. Ideas applying the M-of-N method were originally used with a
KBANN system [Towell and Shavlik(1993)]. Setiono also proposes an algorithm for extracting
M-of-N rules from feedforward neural networks [Setiono(2000)].

Validity Interval Analysis (VIA) (Pedagogical) — Extract rules that map inputs directly to outputs
by generating arbitrary intervals to all nodes within the network, then iteratively refining the
intervals according to activation values. These intervals become either consistent or inconsistent
with network weights and biases. Thrun, the creator of VIA, indicates this approach is similar to
sensitivity analysis because it examines the network outputs while varying the inputs.

RULENEG (Pedagogical) — Extract conjunctive rules using propositional calculus, where each
rule expression is the disjunction of conjunctions. Training data is coupled with the trained neural
network to iteratively build at most one conjunctive rule for each input pattern.

And, more recent developments than those included in the report by Andrews:

RX (Decompositional) — Combinations of discretized output link values are tested to determine
when the desired outputs are produced. Inputs supporting these values are substituted, result-
ing in a series of rules describing the outputs in terms of the inputs [Setiono and Liu(1995),Lu
et al.(1995b)Lu, Setiono, and Liu,Lu et al.(1995a)Lu, Setiono, and Liu].

RG (Decompositional) — Data (clusters of activation values) are grouped in terms of class. Rules
are constructed by iteratively finding the best selection of attributes that differentiate the target
class from the remaining classes of data until all data elements have been considered. This process is
performed for finding the relationships of network inputs to hidden nodes, and also for determining
the relationships of hidden nodes to output nodes [Setiono and Liu(1996)].

TREPAN (Pedagogical) — Constructs a decision tree from the neural network by growing the tree
according to decisions promoted by network nodes. The tree is grown until one of several stopping
criteria are met [Craven and Shavlik(1997), Craven and Shavlik(1999)].

It is evident that there are many approaches to rule extraction for connectionist systems; traditional
wisdom suggests there will always be a place for a variety of solutions. A couple of these systems warrant
additional comments before introducing the aggregate model.



NeuroRule is a well-specified system for performing rule extraction on feedforward connectionist
systems [Lu et al.(1995b)Lu, Setiono, and Liu]. NeuroRule trains a neural network containing a single
hidden layer using input cases that are typically preprocessed using thermometer encoding. Hyperbolic
tangent activation functions are used at the hidden layer with a basic sigmoid function at the output
layer. Training is performed using a cross-entropy function with a penalty component to keep weights
small [Setiono(1997)]. The authors also propose a simple pruning scheme to reduce the initial fully-
connected network into a more manageable system with few links.

The fully trained NeuroRule system extracts rules using the authors’ RX algorithm, an approach that
discretizes activation values to determine classification rules. This decompositional extraction algorithm
closely couples rule extraction with network pruning to obtain a reasonably small and accurate set of
representative rules. The network is pruned and retrained until a maximum tolerable error is reached,
then the RX approach is used to discretize link values, working from the output node(s) back to the
inputs. NeuroRule has also been used with the RG algorithm.

KBANN is among the earliest connectionist systems supporting rule extraction, including the use
of M-of-N rules [Towell and Shavlik(1993)]. KBANN is a knowledge-based neural network developed
and enhanced by Shavlik, Towell, Craven and others. The KBANN systems creates neural networks
by building a topology and setting link weights. This is accomplished by translating rules directly
to the network architecture, then applying training examples for system learning. Continued research
using the KBANN has produced several interesting extensions, including TopGen and DAID [Towell and
Shavlik(1992), Opitz and Shavlik(1995)].

The KBANN algorithm tends to produce “deep” networks (containing multiple hidden layers), which
can lengthen training times and increase network complexity. Towell and Shavlik address this issue with
the creation of the DAID algorithm. The DAID preprocessor sits between the domain rules and the
network translator, suggesting additional links that may strengthen relationships found during training.
DAID’s sole responsibility is the generation of these links. This is important because it is easier for the
KBANN to eliminate useless links than to add new links. Links added by DAID can improve network
generality and robustness to noise, since the KBANN may contain a better subset of network links. This
could also decrease network complexity, allowing the KBANN a better selection of links to eliminate.

The TopGen (Topology Generator) algorithm by Opitz and Shavlik specializes in adding nodes to the
KBANN, versus the links added by DAID [Opitz and Shavlik(1995)]. TopGen is a heuristic algorithm
that searches the KBANN for nodes with high error rates, where the network experiences difficulty in
generalization. The strategic addition of nodes eliminates or decreases the number of false positives and
false negatives in the network without disrupting the domain theory originally encoded by KBANN. Of
course, the network must be retrained following the addition of new nodes.

Once the KBANN is created and appropriately trained, the TREPAN technique concentrates on
generating hypotheses by extracting decision trees from the trained neural network model [Craven and
Shavlik(1997), Craven and Shavlik(1999)]. TREPAN creates the tree best-first because it progressively
refines the tree based on the entire network, not using an analysis of the network structure or weights
like other algorithms. A subset of training instances are applied as queries against the trained network
to guide tree creation. Nodes are split as the tree continues to grow until one meeting one of the stopping
criteria: maximum tree size, reasonable validation, or node coverage using statistical testing.

TREPAN’s creators point out that the algorithm can be applied to a wide variety of neural networks
and does not require special network training algorithms or architectures. In some cases, the algorithm
can also be applied to structures besides neural networks. The user also has control over the size and
granularity of the extracted tree. Finally, a variant of TREPAN can be used to extract finite automata
from recurrent neural networks.

Another useful model is the Aggregate Feedforward Neural Network (AFFNN), an architecture de-
signed by Schmidt and Chen, introducing a new mechanism for designing and training neural net-



works [Schmidt and Chen(2002)]. This unique connectionist system strives to learn the relationships of
each attribute with respect to the remaining attributes in the system. The AFFNN is trained by simul-
taneously presenting all K attributes as network inputs. All K attributes are also provided as network
outputs, where each output is based solely on the remaining attributes. At the completion of successful
training, the network is able to provide the values of every attribute as a function of the remaining
attributes. The AFFNN topology consists of a fully connected feedforward network with a single hidden
layer, and can be trained using traditional backpropagation algorithms and their variants. In fact, the
AFFNN does not have any system-specific training or error requirements; almost any combination of
training and error functions can be used. The AFFNN does need a suite of support functions, consisting
of a set of preprocessing and postprocessing operations and a specialized performance function wedge
that operates immediately before the standard error function is called.

Since this system learns relationships for all attributes within one unified network network, it is
reasonable to believe that the AFFNN provides a novel basis for rule extraction. The main thrust
of this paper describes one mechanism by which the knowledge contained within a trained AFFNN
can be extracted and expressed as a collection of rules. The decompositional generalized knowledge
extraction technique discussed here is capable of finding descriptive rules based on AFFNN connection
weights and representing them in a format acceptable for use with code generation methods. This
extraction procedure has been designed, implemented, and tested by the authors as a proof of concept,
demonstrating that the AFFNN is a practical and useful platform for rule extraction. The mechanics of
extracting rules from academic examples are provided, along with comparisons to other systems.

Background on the key aspects of the AFFNN and its support system is briefly reviewed in the next
section, followed by an examination of a practical method for extracting rules from the trained network.
Remarks about the continuation of this research effort, including comments about about the AFFNN’s
strengths and weaknesses, are given in the conclusion.

2 The Aggregate Feedforward Neural Network (AFFNN)

The AFFNN is best described as a unified connectionist model that behaves as if it were K individ-
ual networks. Alternatively, consider the AFFNN as a collection of K parallel, interconnected neural
networks that are treated as a single neural network system. Either way, the AFFNN itself is a fully-
connected neural model with a single hidden layer and the same number of nodes in the input and output
layers.

The premise of the AFFNN is that a single feedforward neural network can be constructed in such
a way that, for any given attribute, each attribute can be expressed as a function of the remaining
attributes, when such functions exist. Given K attributes, a single network can be trained to learn the
same functions that would generally require designing and training K completely independent networks.

2.1 Defining the Aggregate Feedforward Neural Network

The data used with the AFFNN system determines network topology. Once the data is prepared,
cleaned, and discretized, if needed, a template vector G is created to reflect the encoding used by the
data cases. The length of G (|G|) defines the number of nodes in the AFFNN’s input and output layers,
but the number of nodes in the hidden layer is determined empirically. Layers are fully connected, from
input layer to hidden layer to output layer.

Figure 1 illustrates the fundamental AFFNN structure. All attributes are treated as inputs to the
AFFNN. Since these attributes cannot generally be used in their raw form, they are commonly encoded
into a simple binary representation using a binning or thermometer-based scheme. Each attribute
requires one or more network inputs to be properly represented. The template vector G captures the
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Figure 1: Example AFFNN

input vector positions used to encode each attribute. In the figure, suppose an arbitrary dataset with
three attributes A, B, and C are encoded in a way that they use 3, 1, and 2 input nodes respectively for
a total of six required inputs. The template G at the right of the figure reflects the encoded positions of
all attributes: the three cells containing “1” represent the encoded positions of the first attribute, A; the
cell containing “2” is the encoded position of the second attribute, B; the last two positions are reserved
for the third attribute, C. Since |G| = 6, the AFFNN contains six nodes in the input and output layers,
which are fully connected to the nodes in the hidden layer.

The newly created AFFNN can use virtually any standard error function and supervised training
algorithm the user specifies, but relies on a support system for proper operation. This system includes
a small amount of administrative data coupled with a unique combination of preprocessing and post-
processing support functions and a specialized performance function wedge (“AGPF”). These functions
allow the AFFNN to use many standard feedforward training and performance functions without modi-
fication. They also prevent the AFFNN from becoming autoassociative, even though all input attributes
are also network outputs. System features are examined here in turn.

Figure 2 illustrates the general AFFNN system architecture. The template vector G (|G| = |V]),
shown in the figure, denotes the sections of input vector V' belonging to each attribute, allowing G to be
used to quickly and efficiently mask attributes. The preprocessing function uses G to reproduce a single
input vector V' containing K attributes as a series of K input vectors, Vi-..Vk+, where each vector V;«
in the series masks a single attribute ¢ € (1..K) with zeros. The shaded portions of the vectors at the
left of Figure 2 indicate the masked sections of each V;-. Masking an attribute in this manner prevents
it from directly contributing to the network solution, so the trained AFFNN’s output is a function of
the specific input vector V;-:

Oi+ = fnet(%*) (1)

where fpe¢() is the function learned and performed by the AFFNN. The preprocessor extends the entire
set of T input cases using this method to yield a total of T'x K AFFNN inputs, with each extended
input vector processed according to Equation 1.
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Figure 2: The AFFNN System

Target vectors must also be provided since the AFFNN is trained with supervised algorithms. K
target vectors are generated for each original input vector V' in the same way the extended input vectors
are created, but with the template mask in G reversed: extended output vectors O;+ only contain values
in the locations corresponding to the masked positions in V;+. These extended output vectors are only
used during network training, when target values are required. Since the extended input (source) and
output (target) vectors are masked with 0’s based on the same original input vector, the relationship
between these vectors can be expressed by:

Vi: Vi =V -Gy (2)
Vi: O =V -G+ (3)
Vi:V =Viu+ O (4)

where G;+ and G;+ are mask vectors based on the template vector G, with G;+ containing 0’s at
elements corresponding to attribute i and 1’s elsewhere, and G;+ containing 1’s at elements corresponding
to attribute ¢ and 0’s elsewhere. Note relationships 3 and 4 only hold for the training data; target vectors
are not computed for general AFFNN use after training has been performed.

When T x K input cases are applied to the AFFNN, T x K output cases are produced. The post-
processing step merges these intermediate system outputs into 7' cases, corresponding to the original T’
input cases. Any specific output vector O;+ only contains valid data for attribute ¢ at positions indicated
by G;+, and G;+ for a specific ¢ is mutually exclusive of all other positions in the output vector. This
allows the results O;+...0g+ to be combined into a single output vector O by masking and summing
each O;+ at G;+, visually represented in Figure 3:

K
0= Z(fnet(Vi*) “Gi+) (5)
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Figure 3: Combining Outputs

where fnet(Vi+) represents the actual output of the AFFNN for a specific V;+. Such exclusivity enables
the simultaneous training of all K attributes, and for any specific attribute ¢ in O, the relation O;+ =
Jnet(Vix) expressed in Equation 1 still holds.

Note that the postprocessing operation is the reverse of preprocessing, collecting 7'+ K output vectors
from the AFFNN and combining each set of K vectors into a single output vector O. Resultant output
vectors are valid for all K attributes in the vectors. That is, observing some G;-masked portion of O for
any ¢ will yield a result according to Equation 1, guaranteeing the values of attribute i were computed
by the AFFNN only based on the other K — 1 attributes®.

2.2 Training the Aggregate Feedforward Neural Network

The AFFNN is trained like other connectionist systems, by methodically presenting all encoded and
preprocessed training cases to the network. By extending the input and output vectors, each input
vector V in the dataset is presented to the network as V;+ for every value in ¢ = 1..K. This effectively
cycles the training through all attributes represented in V. Extended input and output vectors are
used with a supervised batch training algorithm, but the key to training with these extended vectors
lies in the definition of the AGPF performance function wedge. Figure 4 illustrates the movement of a
single extended input vector V;» through the AFFNN during network training and demonstrates how
the AGPF wedge uses G; to modify O,, the raw (actual) AFFNN output.

As Figure 4 shows, presenting an arbitrary (extended) training case Vi« to the AFFNN results in
an actual output vector O, containing (or converging toward) the expected target output vector X;+,
which contains the target component X;. The problem is, while all of the target vector X;+ is cleared
except for the desired component X;, the actual output vector O, contains “garbage,” non-zero values
outside of the component X;. Since these excess values don’t matter to the training, it is important that
they not adversely impact training by “falsely” contributing to neural network training error.

IThe accuracy of these outputs will be bounded by the accuracy of the trained network.
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The AFFNN performance function wedge alleviates this problem by using the template vector G to
clear all components of O, except for the G; components (corresponding to the desired components X;)
prior to passing O, forward for error evaluation:

Oa <~ Oa . Gz’+ (6)

The resulting modified actual output vector is compared with the expected target vector X;+ in the
computation of error using MSE or other appropriate error functions. This procedure is performed
on every output case, and the cleaned outputs are evaluated by the network’s true error function in
determining training error, in turn feeding the supervised training algorithm. All of training is completed
this way.

In reality, this process is done for the entire array of output cases, since training occurs in batch
mode. Administrative data included in the AFFNN definition includes matrices configured to enable the
template vector mask to be quickly and efficiently applied along the length of the entire actual extended
output array. The raw “corrected” network outputs are a continuous array of T x K cases, which are
postprocessed back to the original T' cases before leaving the AFFNN system.

Training commences when the prepared input cases are provided to the AFFNN system preprocessor,
and proceeds with the performance function wedge as described. The fully trained AFFNN is able to
process previously unseen inputs just like other connectionist models, as long as the input cases are
preprocessed and extended using the same techniques as the training data.

2.3 Visualizing the Trained AFFNN

Tt is possible to view the trained AFFNN as a collection of physically separate networks that “coinciden-
tally” have many of the same weights. This technique, demonstrated in Figure 5 (as a de-aggregation
of the AFFNN example in Figure 1), emphasizes the similarity among the aggregate network structure
while simultaneously calling attention to the distinct differences in the way the individual portions of
the AFFNN are used, depending on the output attribute desired and its corresponding input vector
Vi+. These “independent” networks form the supporting basis for rule extraction, discussed in the next
section.

The solid nodes (circles) and links (lines) in each figure reflect the path taken by the data when
considering the training and/or solution for each specific attribute. For example, Figure 5(a) only uses
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Figure 5: De-Aggregating the AFFNN

input data from attributes B and C to produce outputs for attribute A, explicitly ignoring inputs from
attribute A. This usage corresponds to O+ = fret(Vi+), where attribute A is indicated by the encoding
“1,” as shown in Figure 1. The B and C attribute data becomes the input to all nodes in the hidden
layer, and the results are only passed to the outputs designated for attribute A2. Figure 5(b) operates
in the same manner, ignoring attribute B inputs for obtaining attribute B outputs; similar methods are
employed when attribute C in Figure 5(c).

It is important to note that an attribute j is “reused” in every Vj«, i # j. For example, inputs from
attribute C (i=3) contribute when determining results for both attributes A (V;+) and B (V5+) (Figures
5(a) and 5(b)). The weights leading from input attribute C to the hidden layer nodes are identical in
both cases, since they are the exact same links in the full AFFNN. It is these weights the AFFNN is
challenged to discover during training.

3 Using the AFFNN for Rule Extraction

The previous section briefly described how the AFFNN works in preparation for discussing rule extrac-
tion. The ultimate goal is to find rules describing the functions provided by the network’s output nodes.
One way to achieve this goal is to use a basic decompositional extraction recipe. Such approaches tend
to follow the same basic schema, although a large number of variations exist:

1. Select an output node,

2. Find the clusters of values leading from the hidden layer to the selected output (clustering algo-
rithms abound),

3. Determine which cluster values support the desired output,
4. Compute the network inputs producing the necessary cluster values, and

5. Substitute the results to obtain the final solution.

2The results from the hidden layer are actually passed to all output nodes, but only the outputs corresponding to
attribute A are valid when Vi« is the network input. All other attribute outputs are invalid by definition.



The fully trained AFFNN contains a complete picture of the the relationships among the data elements.
The objective of rule extraction is to coax the network into revealing the knowledge it contains. This
section explains how a decompositional technique can be used to generate rules using the AFFNN as an
extraction platform.

The authors designed Algorithm 1 specifically for the AFFNN following the example of typical
decompositional methods. Like RX, this algorithm begins at the final network layer and works in
reverse for a single node in the output layer. Unlike RX, however, each expression derived at the output
layer is a collection of terms, treated as an atomic unit that is either satisfied or discarded, depending
on the potential support provided at the input nodes.

Algorithm 1 Generalized Knowledge Extraction
Given:

e Output node N; for which rules are desired
e Range of values R of N; for which extracted rules should be valid

® Onmne set L; corresponding to each node H; in the hidden layer, where L; is the set of clusters of values
traveling along the links from the hidden node to node N;

Compute:

1. Create an empty candidate expression set E

2. For every distinct set S of cluster values, selecting one value from each L;:

(a) Compute the output z of N; when values in S are used

(b) If z is in range R, then S is a reasonable “expression”; add set S to expression list E

3. Simplify the candidate expressions in F
4. Create an empty result expression set F

5. For each candidate expression C in E:

(a) Find the set of all input nodes P (and their values) that satisfy all terms in C
(b) If P is non-empty then add P to F

6. Set F' contains information describing the inputs required to satisfy the desired range R of node N;
Algorithm Returns:

e Set F, enumerating rules for range R of node N; in terms of input values

The objective is to find rules describing the functions at the output nodes. For a given output node,
contributing hidden layer nodes are found, and the contributing input layer nodes are computed for each
contributing hidden layer node. This data is combined into terms, which are used to derive rules. The
rules are turned into an algorithm, which is easy to read, validate, and use. This algorithm also serves
as a product, able to perform classifications apart from the trained neural network.

These ideas are more easily seen in the example of Figure 6, a relabeled replication of Figure 5(c).
When examining the output attribute C for this AFFNN, only the output nodes labeled ¢; and ¢y are

10
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Figure 6: AFFNN Interpreted for Attribute C

useful. The solid lines from nodes h;..hg are the links of interest from all nodes in the hidden layer to
the output nodes ¢; and co. There are “expressions” involving these hidden nodes that describe their
contributions to the outputs of ¢;, and also of ¢;. Expressions describe output node functions in terms
of hidden node values, and are expressed as sets of numbers obtained from the clusters associated with
each hidden node.

For any specific value of hidden node h;, some combination of inputs connected to h; satisfies the
h; “term” of the expression. (Input nodes corresponding to ¢; and c¢s cannot contribute to any h; when
outputs for attribute C are being considered, by definition of the AFFNN. This is indicated by the
dashed lines leaving attribute C inputs in the figure.) Once the contributing inputs are identified, a
series of rules can be developed describing the relationship from network input to output.

Figures 7(a) and 7(b) illustrate the concepts identified in Algorithm 1 for a generic AFFNN. Figure
7(b) represents the nodes of the hidden layer feeding a single node N; of the output layer. During
training, it becomes evident that a cluster of values is associated with each link, as shown in the figure.
Certain combinations of the values on these links will produce the desired output node values. Each
unique combination of hidden node cluster values makes up an expression, where there are [[, | H;| total
expressions when | H;| represents the number of cluster values for hidden node H;. The exhaustive process
of testing all combinations of these values corresponds to steps 1-3 of the algorithm. For examples, one
valid expression might be:

(al b1 ¢2 d1 ... ml n2) (7

indicating that if the corresponding nodes in the hidden layer produce values belonging to these clusters,
the desired value of N; will be obtained. A valid expression is an expression producing the desired output
at the specified output node, and is a referred to as a candidate expression. The final list of candidate
expressions enumerates all combinations of hidden node values producing outputs in the expected range
for the specified output node.

Only candidate expressions undergo additional testing, with their terms individually checked against
the possible values from the input layer. Testing these expressions is an iterative process similar to the
method already introduced for initially finding expressions. Since candidate expression terms are simply

11
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Figure 7: Finding Expressions

the outputs of the nodes in the hidden layer, it is possible to determine the set of inputs producing the
desired hidden node output. All terms of an expression must be tested. An expression is true if, and only
if, there is a set of inputs that produce the desired hidden node values for all terms in the expression.

Figure 7(a) depicts the input nodes leading to a single node in the hidden layer. This figure depicts
the the links leading from the nodes in the input layer to the nodes in the hidden layer. Clusters of
values travel along these links much like the clusters of values traveling on links from the hidden layer
to the output layer. Any combination of these values leading to the desired term is collected into a
new set S, of contributing input expressions for hidden node H;. (Recall, the cluster values of input
nodes belonging to the same attribute as output node IV; are not permitted to be used for testing terms,
according to the definition of the AFFNN.) After contributing inputs for all terms have been identified,
the intersection of all sets ([,,, Sm) defines the set of inputs supporting all terms of the expression. Said
another way, a variety of inputs may support an individual term, but all terms must be supported for
the entire expression to be supported; thus, the inputs satisfying the expression are exactly those inputs
satisfying all individual terms in the expression. Exposing expression terms as described coincides with
algorithm steps 4 and following. The resulting expressions define the output with respect to the original
input values.

Simple collections of if-then rules can be almost trivially generated once the final expressions are
found. The quality of these rules depends almost entirely on the quality of the expressions, which in
turn heavily rely on the accuracy of the system from which the expressions are derived. As an example,
an expression suggesting that attributes A, and B2 and C) are required to satisfy the solution set can
be written as the rule:

if (A1 and B2 and C1) then return true;

12



where A1, B2, and C1 represent specific values of the attributes A, B, and C. An entire series of similarly
generated rules reflects the extracted expressions, providing an equivalent solution that can be verified
by subject-matter experts.

One convenient side-effect of such rules is that they can also be generated directly into a macro
language, allowing them to be executed as code. Creating rules in the form of code provides a strict
structure that assists in forcing the generation algorithms to write concise, expressive, and compliant
rules. The AFFNN uses MATLAB as a notation for expressing rules. The generated rules are executable
MATLAB code, capable of independently processing the same datasets used with the AFFNN.

4 Comparative Results

There are many practical methods for extracting rules from data, as well as an abundance of reasonably
high quality, publicly available datasets. Two problem domains (datasets) and a sample of published
techniques are given here as evidence that extracting rules from the AFFNN is both sound and practical.
The domains selected are popular (well-known among researchers) and have special characteristics that
make them valuable for testing the AFFNN and demonstrating that it is useful as a platform for rule
extraction. Before presenting the AFFNN-based solutions, a rationale for the selection of each problem
domain is presented. Comparisons to other techniques are given in each section below, as applicable.

Problem M, of the MONK’s problems is an excellent example for the AFFNN to solve. It is a
well-defined problem with a known solution, and it is a simple matter to exhaustively test all cases of
the solution. Problem M, is small, making a very reasonable proof-of-concept example for use during
algorithm development and testing. It is also reasonable easy to train the AFFNN for M,, and the
training is not extensive. This means that algorithmic modifications can be made and tested quickly
using Ms.

Fisher’s “Iris Plants Database”? is probably the most well-known classification dataset in existence.
The goal is to determine the class of iris plant from four continuous-valued attributes. There are 50
examples of each class: Iris Setosa, Iris Versicolor, and Iris Virginica. According to published information,
the first class is linearly separable from the others two, which are not linearly separable from one-another.

All of the AFFNN solutions were generated using custom MATLAB (v5.3r11) models built by the
authors using the MATLAB Neural Network Toolbox [Demuth and Beale(1998)]. Model execution and
testing was performed on a Linux-based dual Pentium-IT 300 MHz machine with 128Mb RAM and 1Gb
swap space.

4.1 The MONK'’s Problems

The three MONK’s problems are fabricated datasets in which robots are described using seven (7) at-
tributes, listed in Table 1 [Thrun et al.(1991)Thrun, Bala, Bloedorn, Bratko, Cestnik, Cheng, De Jong,
DZeroski, Fahlman, Fisher, Hamann, Kaufman, Keller, Kononenko, Kreuziger, Michalski, Mitchell, Pa-
chowicz, Reich, Vafaie, Van de Welde, Wenzel, Wnek, and Zhang]|. Attributes z;..z¢ are the original
attributes describing the problem set, and attribute z, was inserted to indicate whether or not the case
belongs to the solution set. For each of the three problems, a robot belongs to the solution set if it meets
the problem constraints.

The original problem statement requires that only a predefined subset of the 432 combinations of
attributes z;..z¢ is given as training data, with the entire dataset used for testing. The defined training
subset consists of 169 training cases, 40% of the problem space, containing both positive and negative
examples with no noise in the data. The second problem (M5) is described as:

3Fisher,R.A. "The use of multiple measurements in taxonomic problems" Annual Eugenics, 7, Part II, 179-188 (1936).
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Table 1: Attributes of the MONK’s Problems

| Variable | Description | Possible Values |

To in solution set? no, yes

Ty head shape round, square, octagon
To body shape round, square, octagon
T3 is smiling? yes, no

T4 holding sword, balloon, flag

5 jacket color red, yellow, green, blue
Zg has tie? yes, no

Problem M,: (exactly two of the six attributes z;..x¢ have their first value)

4.1.1 The AFFNN Solution

There are nineteen (19) total attributes if all options of zg..zs are counted. One AFFNN solving Problem
My is a 19-12-19 network with sigmoid activation functions in the hidden layer and linear activation
functions in the output layer. The template vector for the encoding of these boolean-valued attributes
is:

G =1[1122233344555666677]7 (8)

where the encoding of each attribute is indicated by the corresponding number in G. The underscored
element in G is the encoded position of attribute 1 representing zo = yes (“member of the solution
set”). This position corresponds to the 2nd node in the output layer, the node for which M, rules are
generated.

Following 1000 epochs of training in 360 seconds, the number of clustered elements for each of the
12 hidden nodes was, respectively, { 1, 1, 4, 1, 4, 3,4, 1, 1,19, 1, 1 }. This results in 3648 ([],2, |H;|)
unique expressions, the set of all combinations cluster values. After following Algorithm 1, the list
of those expressions generating the desired output of Ny = 1 contains 14 candidate expressions after
minimization. The output node Ny = 1 when any one of the candidate expressions is true.

Automatically generating if-then rules for these expressions produces 15 combinations of inputs that
satisfy all of the terms of at least one of the candidate expressions. Therefore, output Vs is satisfied if any
of these final 15 rules are satisfied. These rules, generated to reflect the original unencoded attributes,
basically follow the form:

if (
(x1 <= 1) and
(x2 1) and
(x3 1) and
(x4 1) and

(x5 1) and
(x6 1)

) then result=true;

A
1]

vV V V V

According to this example rule, if attributes x1 and x2 (head shape and body shape) have their initial
values and all other attribute do not, the output is true. This rule demonstrates the desired result, and
the generation algorithm created this and 14 additional similar rules.
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For the minimal set of rules satisfying Ms, all of x1..x¢ # 1 except for:
(x1==1 && x2==1) (x2==1 && x3==1) (x3==1&& xd4==1) (xd4==1 && x5==1)
(x1==1 && x3== (x2==1 && x4==1) (x3==1 && x5==1) (xd4==1 && x6==1)
(x1==1 && x4==1) (x2==1 && x5==1) (x3==1 && x6==1)

(x1==1 && x5==1) (x2==1 && x6==1)
(x1==1 && x6==

(xb==1 && x6 ==1)

— —

Figure 8: Minimal Set of Rules Satisfying Mj

Table 2: Solutions to the M,

| Algorithm Name & Type | Type | M, % Correct | Comments |
mFOIL Inductive Learning 69.2% FOIL-based
ID3 Inductive Learning 67.9% Decision Trees
Backpropagation Connectionist 100.0% 17-2-1 Network
AFFNN Connectionist 100.0% 19-12-19 Network

Problem M, is small, and the set of expressions satisfying the solution set can be easily enumerated,
shown in Figure 8. The minimal rule set for M, is only 15 rules. The autogenerated AFFNN rule set of
15 rules exactly corresponds to the rules listed in Figure 8, and correctly classifies 100% of the test data.

4.1.2 Comparative Results

Thrun prepared a report comparing many algorithms for learning the MONK’s problems, where re-
searchers advocating their methods contributed their own results to this collaborative report [Thrun
et al.(1991)Thrun, Bala, Bloedorn, Bratko, Cestnik, Cheng, De Jong, DZeroski, Fahlman, Fisher,
Hamann, Kaufman, Keller, Kononenko, Kreuziger, Michalski, Mitchell, Pachowicz, Reich, Vafaie, Van de
Welde, Wenzel, Wnek, and Zhang]. A small subset of the reported problem M, solutions is reproduced
in Table 2, with data from the AFFNN added.

In fairness, many of the systems in Thrun’s report performed much better on problems M; and
Mg3, but those replicated in this table show M results that were typical of most systems; connectionist
and cascade correlation systems tended to perform well, where most others were in the 65-75% arena
for problem M,. The mFOIL algorithm, generating 19 Prolog clauses, performed poorly due to a low
number of training examples. The ID3 example is based on the classical Top-down Induction of Decision
Trees by Quinlan, selecting the “best” partition of the training examples. (Quinlan’s various decision-
tree-based algorithms continue to be the measuring rod for much rule-building research.) ID3 produced
a decision tree with 66 nodes and 110 leaves.

Thrun reported the training time of his own 17-2-1 neural network to be in the neighborhood of
10-30 seconds on a SUN SparcStation, and approximately 5 seconds on a Connection Machine CM-
2. In comparison, the authors were able to conduct an independent test replicating this network with
a training time of just over 6 seconds on a dual Pentium-II 300MHz machine. Thrun’s network did
not produce any “rules,” but did classify all test examples accurately. The trained AFFNN correctly
classified all test examples, in addition to using the rule extraction algorithm to produce the minimum
set of exactly 15 if-then rules shown in Figure 8. The extracted rules correctly classified 100% of the
data with no misclassifications.
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4.2 The Iris Problem

This dataset consists of fifty examples each of three different types of iris plants (Iris Setosa, Iris Ver-
sicolor, or Iris Virginica), where each sample contains four distinct measurements: sepal length, sepal
width, petal length, and petal width. The goal for classifiers is to determine the type of iris plant based
on these four attributes. Results presented here are based on the corrected dataset, where samples #35
and #38 have been corrected. The full dataset, including corrections, can be obtained from the UCI
Machine Learning Repository [Murphy and Aha(1992)].

4.2.1 The AFFNN Solution

An AFFNN with a 21-9-21 configuration took 89 seconds to train 1000 epochs on this dataset, where
the odd entries in the original data were used for training and the even entries for testing. Training
utilized all five attributes (sepal length, sepal width, petal length, petal width, and iris class), with the
first four being thermometer-encoded using 4, 3, 9, and 2 inputs, and the class attribute binned into 3
inputs. The trained AFFNN classified the Iris Setosa to 100% accuracy in the training set and 99% in
the test set; the Iris Versicolor to 100% accuracy in the training set and 99% in the test set; and the Iris
Virginica to 95% accuracy in the training set and 93% in the test set.

The hidden nodes contained between 1 and 9 clustered values, resulting in a total of 17280 expressions.
The automated rule generation algorithm applied to the fifth attribute (iris class) produced 10 rules
classifying the Iris Setosa to 100% accuracy in both the training and test sets, 5 rules classifying the Iris
Versicolor to 91% and 88% accuracy in the training and test set respectively, and 10 rules classifying the
Iris Virginica to 95% and 89% accuracy in the training and test sets. Rule extraction time, including
generation of the executable rule files, was under 30 seconds in all cases.

At the same time the AFFNN learned the relationships of the three iris classes, it also learned to
classify the Petal Width attribute as a function of all other attributes with 99% accuracy in the test set.
When considering this output, hidden nodes contained from 1 to 5 clusters yielding 9375 expressions, and
the resulting 15 rules performed with 96% and 89% accuracy on the training and test sets, respectively.
The AFFNN also learned Sepal Length at 72% accuracy with respect to the other four attributes, Sepal
Width at 80%, and Petal Length at 75% on the test set. This additional learning demonstrates the
utility and functionality of the AFFNN model, showing the ability of the AFFNN to learn multiple
relationships within the same network.

4.2.2 Comparative Results

Engelbrecht and Viktor use the Iris Problem in an evaluation of their approach to use sensitivity analysis
for locating decision boundaries within neural networks [Engelbrecht and Viktor(1999)]. The method
they propose applies first-order derivatives to the neural network outputs with respect to the input
patterns for finding the decision boundaries. This technique is used in conjunction with their ANNSER
rule extraction algorithm to find the rules describing iris data in 4-2-3 neural network containing sigmoid
activation functions. Inputs to this system were scaled to the range of [-1, 1], and pruning reduced the
network to a 2-2-3 system with an accuracy of 95.9% on the test set. (This system randomly selected 105
cases for the training set and used the remaining 45 cases in the test set.) The ANNSER rule extraction
algorithm produced rules:

Rule_1: if petal length < 19.5 and petal width < 6.5 then Setosa
Rule_2: if petal length > 49.5 and petal width > 16.5 then Virginica
Rule 3: if petal length < 49.5 then Versicolor

Rule 4: if petal width < 18.5 then Versicolor
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The test accuracy of this rule set is reported to be 95.9% with individual rules ranging from an accuracy
of 93.9% to 100%.

Setiono and Liu present interesting and useful results using a version of the RX algorithm [Setiono and
Liu(1995)]. Their feedforward 39-3-3 neural network uses discretized inputs, where sepal length, sepal
width, petal length, and petal width are thermometer-encoded into 16, 9, 7, and 6 inputs, respectively.
The final pruned network is a 4-2-3 net, and their extraction algorithm produces the rules:

Rule 1: if petal length <= 1.9 then Iris Setosa
Rule 2: if petal length <= 4.9 and petal width <= 1.6 then Iris Versicolor

Default: Iris Virginica

These compact rules correctly classify 98.67% of the training set and 97.33% of the test set, where rules
in the odd positions in the original dataset were used for training, and the even numbered rules for
testing. The authors did not indicate the training or rule extraction time for this model. Similar results
are obtained using RG [Setiono and Liu(1996)].

The AFFNN system performance was very competitive, with the network correctly classifying test
data at 99%, 99%, and 93% accuracy for the Iris Setosa, Versicolor, and Virginica. The rule extrac-
tion mechanism introduced as a proof-of-concept generated a separate set of rules from this 21-9-21
AFFNN describing each class of iris flower, with rule results ranging in accuracy from 88% to 100%
as reported above. The rule extraction algorithm uses a straight forward decompositional approach in-
tended to demonstrate how knowledge can be obtained from the AFFNN, and does not claim to generate
a minimum number of rules for any given dataset.

The rules generated for the Iris Problem are very promising, although the number of extracted rules
is somewhat greater than those produced by Setiono. This is largely due to the greater number of hidden
nodes in the AFFNN. Another factor is the performance of the AFFNN’s discretization algorithm and
where it “chose” to partition the inputs. (This discretization algorithm yielded 21 more coarsely divided
network inputs for the AFFNN, versus the 39 inputs used in Setiono’s example.) Pruning and retraining
the AFFNN might also reduce the number of rules and improve their accuracy; pruning algorithms have
not yet been introduced into the AFFNN design.

5 Conclusions

Exploratory data analysis often suggests looking at the same data along several different axes, investigat-
ing the impact of data attributes on a single output attribute. Using a neural approach for individually
analyzing K attributes of a dataset would generally require K distinct neural networks, each with one
attribute as an output and all other attributes as inputs. Examining all of these relationships typically
means training K individual networks, each with its own unique set of weights and, possibly, its own
topology. The Aggregate Feedforward Neural Network architecture developed by the authors allows all
attributes to be simultaneously trained using the same physical network. This is an important character-
istic for rule extraction, allowing rules to be produced for any of the network outputs without requiring
separate networks to be trained.

One distinct advantage of the AFFNN is that it is more of a technique, a methodology, than a
topology. The AFFNN is designed to be extended and modified without loss of generality, especially
with respect to these features:

1. Usable with any suitable supervised training algorithm — There is no implicit reliance on back-
propagation algorithms or their variants.
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2. No reliance on specific performance functions — MSE is common, but cross-entropy functions like
those used in NeuroRule, or any other reasonable functions can be applied.

3. Add hidden layers — Fully or partially connected hidden layers, best applied after the initial fully
connected hidden layer, may be added as long as the selected training algorithm supports them.

4. Results can be de-aggregated — The user satisfied with the training performed on a particular
attribute can “lift” the corresponding de-aggregated network from the AFFNN, as shown in Figure
5. The resulting network can be used as-is, or additional training and pruning can be applied in
an effort to improve results further.

5. Not tied to specific rule extraction — An original decompositional algorithm demonstrates the
ability to extract rules from the AFFNN, but any practical extraction algorithm could be applied.

6. Rule notation — Automatically generated rules are expressed using MATLAB as a convenient
notation. These rules can independently process the same datasets as the AFFNN. It is not
necessary to use this notation, however; any suitable rule base or notation can be generated from
the expressions extracted from the AFFNN.

The simple and original decompositional rule extraction mechanism developed by the authors for use
with the AFFNN demonstrates one reasonable approach for extracting learned relationships from within
this system. Although the extraction mechanism does not guarantee a minimal rule set, it does generate
a small and understandable collection of portable rules. The examples of AFFNN training and rule
extraction documented herein show that this connectionist model is a viable architecture that could be
particularly well-suited to data mining activities, especially when coupled with practical rule extraction
techniques.

Despite these successes, there are also specific drawbacks to using the AFFNN;, including training
time and convergence. The AFFNN will take longer to train than a “targeted” neural network because
it will be a larger network (with more input, output, and hidden nodes) than a similar network trained
for a single attribute. In most cases, this larger network will require more training epochs, and perhaps
even more data, to train with the same accuracy as a more specialized network. This is clearly the case
when comparing Thrun’s neural solution to the M, problem; his compact 17-2-1 network trains in less
time and fewer epochs than the AFFNN solution.

Convergence is a very important issue, and studies are currently under way to define the conditions
under which the AFFNN is known to converge. This architecture will not always converge, especially
if there are not enough hidden nodes to support the functional requirements of the network. There will
also be cases where the dataset itself contributes to non-convergence, most notably when data is poorly
partitioned according to the anticipated rule set.

The AFFNN is a new research effort. Many current questions are still unanswered, and more questions
arise as the research effort continues. Intermediate results appear to be promising, and developments
continue to be made. Clearly the AFFNN is an interesting architecture that lends itself to data mining
activities. The results presented in this report using these small benchmarking problems merely qualify
the AFFNN for continued research.
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