Special Feature

Promoting Cognitive Design Patterns using Software
Integrated Development Environments'

Vincent Schmidt, vincent.schmidt@wpafb.af.mil; and Christopher R. Hale, halec@saic.com

hether we are designing a
new system, or maintaining
and upgrading an existing one,

our goal must be to ensure the system
supports the work to be accomplished.
The user will shun systems with poor
work support or poor usability, and such
a system will ultimately fall into disuse.
The costs of systems with poor work
support are staggeringly high, both in
actual development dollars and total cost
of ownership, which includes the cost of
humans to operate and maintain systems
‘This article emphasizes the importance
of designing systems that adequately
account for the work requirements and
discusses some tools that can help engi-
neers achieve that goal.

Typically, we think of work as refer-
ring to a collection of technical factors,
bound together within an appropriately
structured environment. However, we
must recognize the importance of the
human as a key component of the sys-
tem. Human users are frequently produc-
ers of inputs, consumers of outputs, and
generators of system controls. As such,
users are critical components of the
system and must be explicitly included in
the system design.

INCOSE defines human systems
integration (HSI) as “the interdisciplin-
ary technical and management process
for integrating human considerations
within and across all system elements; an
essential enabler to systems engineering
practice” (Haskins 2007). The HSI part
of the systems engineering process cer-
tainly includes the physical integration
of the human into the system, as well as
recognizing the cognitive capabilities and
constraints the human user brings to the
performance of the system as a whole.
We find it feasible to identify, codify,
and incorporate this human cognitive
component into the system design in a
more or less formal manner.

HSI practitioners have evolving
models that capture human cognitive

1. Approved for public release by AFMC / 711
HPW, # 88ABW-2008-1130.

requirements. Some models concentrate
on describing cognition at an atomic
modeling level, which system architects
and implementers could use to account
for various cognitive system design
trade-offs carly in the design process.
O’Malley et al. (2008) provide a model
that integrates cognitive descriptions into
the United States Department of Defense
Architecture Framework. Another model
is the low-level descriptive solution
presented by Hale and Schmidt (2008)
and by Hale (2006 and 2008), which is a
comprehensive mechanism for accurately
identifying and documenting cogni-

tive requirements. This solution builds
an integrated network of descriptive
cognitive elements and maps the result-
ing network to specific system cognitive
requirements in context. Of course, a
host of alternative models exists, which
we do not have room to discuss in detail;
some concentrate on cognitive psychol-
ogy, while others are oriented strictly
toward the more formal mathematics of
system design.

System designers commonly use
patterns as a descriptive mechanism to
communicate high-level design require-
ments and criteria. Subspecialties within
the engineering and design communi-
ties have developed their own design
philosophies and symbologies in order
to foster an accurate communication
of the design and design requirements.
Consider the popular notion of elec-
tronic circuit design, where patterns and
symbols shown in schematic diagrams
are used effectively to communicate the
expectation of specific implementation
details. Similarly, the software engineer-
ing community frequently relies on the
use of the Unified Modeling Language to
capture the structure, software represen-
tation, and data exchange expectations
within integrated software systems.

Even in these examples, we develop and
use higher-level patterns to improve
communications and reduce descrip-
tive complexity. More design pattern
concepts are described by Conrad and

Table 1. Cognitive work element for operational
assessment

Acquire | Communicate | Compare | Infer
Decide | Discriminate | Estimate | Integrate
Assign | Aggregate Evaluate | Identify
Choose | Describe Generate | Interpret
Classify | Detect Match Plan
Monitor | Recognize Prioritize | Verify

Stanard (2007), Stanard et al. (2006),
and Stanard and Wampler (2005).

‘The enthusiasm of the computing
community has fueled a resurgence of
interest in the concept of “design pat-
terns;” and the use of patterns is certainly
not limited to areas strictly considered as
software engineering and development
tasks. We find that we can effectively
generate a series of design patterns to
capture the essence of cognitive processes
and tasks. These new design patterns are
an invaluable asset for formalizing the
system architecture and helping to ensure
that the implementer has met the docu-
mented cognitive system requirements.

We can also apply design patterns to
software systems. We recently presented
preliminary concepts for cognitive design
pacterns (Hale and Schmide 2008). The
basis of our work was the introduction of
a small number of reusable and general
system-level cognitive work elements
(CWEs) as building blocks of cognition.
We can combine these CWEs to fully
describe and encapsulate system cognitive
requirements. A system using the formal
CWE descriptions within the implemen-
tation shows full traceability back to the
original cognitive requirements. Table 1
shows a set of cognitive work elements
for an operational assessment task. The
field of cognitive science defines these
terms with very specific meanings. They
are typical of CWE terminology at a
microcognitive level of analysis.

Here, we are extending the ideas of
our previous work by describing the prac-
tical implementation goals of a modular

» continues on next page

INCOSE INSIGHT April 2009 29




Special Feature

Schmidtetal.  continued
software development solution using the

CWE concept.

Integrated Development Environments

Professional programmers rely heavily
on integrated development environments
(IDEs) for both rapid prototyping and
production system design. IDEs typically
include a full suite of development tools,
including outstanding programming
language and library documentation,
excellent software formatting, integrated
revision control, and superb compiler and
debugging facilities. Many integrated
development environments are extremely
complex and might even have support
for multiple simultaneous programming
languages, as well as for multiple hard-
ware and operating system platforms. An
additional valuable feature of several IDEs
is the integration of a graphical user inter-
face design subsystem. This allows the
programmer to graphically build screen
layouts using icons, widgets, wizards, and
graphical user interface design patterns.

Software system developers often
prefer to use integrated development
environments because of the benefits
they offer, including real-time type
checking capabilities and related con-
straint testing that occurs while coding,
thus reducing the rate at which bugs are
introduced into code. In addition, library
and module control mechanisms increase
the capacity for code reusability. Pat-
tern libraries are also beneficial, offering
debugged code at an appropriate level of
granularity, and improving the ability of
the designer and implementer to commu-
nicate the expectations of documented
requirements. All of these items contrib-
ute to a sense of completeness offered by
the IDE.

Many popular integrated development
environments are extensible, allowing
third party plug-in modules to introduce
additional functionality. Many modules
introducing advanced graphical user
interface widget components already
exist for several IDEs. Other modules
might bring programming language
enhancements, a graphical user interface,
or additional widgets to the IDE. Plug-in
modules are often the ideal mechanism
for incorporating new design pattern
libraries, such as a pattern for a cognitive

30 Volume 12No.1  INCOSE INSIGHT

(1) Ontology for Cognitive Work Analysis

Behavioral Processes
Cognitive Work Elements

-conditions
ntingencies

Health and Safet!

V=TC

(2) Informal Models

Expressed as Concept Maps

T=t-[1/(1+e Y]

(3) Synthesize CWE Information

C=log,(Tzv)

for Use by System Engineering
Assign | Aggregate Evatuate | Identify
Choose | Deseribe Crenwrate nkesnrel
Classity { Deteat Match Plan
Monitor | Reengnize Privritize | Verify

Figure 1. Development cycle for cognitive work elements

work element. Since developers can share
modules, a specialized design pattern
module could easily be distributed to
others wishing to take advantage of the
same functionality.

A cognitive design pattern plug-in
module would augment the integrated
development environment with a selec-
tion of cognitive patterns, along with
documentation describing the patterns
and their use. This completely self-
contained module would introduce the
concept of the cognitive component of
human systems integration, and should
assist the programmer by promoting the
inclusion of cognitive requirements into
the system implementation at an appro-
priate level of detail. Merely making such
a module available will also increase the
popularity and utility of the oft-ignored
cognitive aspect of the HSI spectrum.

Using Cognitive Design Patterns

We incorporate cognitive design pat-
terns into the integrated development
environment to promote actualizable (if
abstract) solutions to real, documented
cognitive requirements. When a cogni-
tive work element is chosen from a pal-
ette of available work elements, a wizard
would guide the programmer through a
selection of relevant visualizations pro-
moting the element’s implementation. By
suggesting one or more visual representa-
tions of the CWE, the programmer will

reduce the risk of misrepresenting the
cognitive requirement.

When we use cognitive design pat-
terns from the palette, we also make
requirements traceable. If we specify the
requirements in terms of CWEs, then
the cognitive design patterns implement-
ing the CWEs have essentially a 1:1
relationship with the set of CWEs. The
developer can point to the use of specific
cognitive design pattern components
as partial justification for meeting the
documented cognitive requirements.

Note that a collection of cognitive
design patterns is a development tool;
merely making this tool available for a
software developer certainly does not
ensure that the resulting software is a
reasonable HSI design. Similarly, given
a good HSI design, the developer can
still misuse the concepts of the cognitive
design pattern and misrepresent the
intended design. However, having a
well-developed library of cognitive
design pattern concepts does help build a
hedge against bad designs created out of
ignorance.

Building Cognitive Design Patterns

‘The availability of libraries of cogni-
tive design patterns within integrated
development environments is an asset
for software developers. The benefits of
access to vetted and precoded cogni-
tive concepts— no more coding from



Special Feature

&
S
System Requirement <
v

The system shall aid in determining if
operational objectives will be achieved

The system shall aid in determining if actual
events coincide with the plan

The system shall aid in and allow the assess-
ment of the feasibility of the corrective actions

The system shall aid in correlating combat
assessment results with tactical tasks, tacti-
cal objectives, and operational objectives

The system shall allow and aid in the
balancing of risk vs. benefits

4 4

Figure 2. Mapping functional requirements to cognitive work element patterns

scratch each time—is guaranteed to
improve the quality and reliability of the
resulting software system. However, the
library must be developed before it can be
included as a development module, so we
now address what must be done to build
a cognitive design pattern for inclusion in
the cognitive design pattern library. We
must first gather the list of cognitive work
elements to be included in the library.
Each CWE has a very specific definition,
and over time, the list of CWEs should
become complete. (In fact, we believe our
list to be comprehensive, but our claim
has not yet been rigorously tested.)

Our list of CWE:s is originally derived
from concept maps describing cognitive
work requirements. These concept maps
are often best understood and constructed
by psychologists, human factors special-
ists, and trained requirements analysts,
although it might also be valuable for
technologists to participate in developing
these products. The concept maps not
only provide a mechanism for capturing
work requirements; we can also glean rel-
evant cognitive structures from analyzing
the concept maps. These cognitive struc-
tures consist of one or more related units
of cognition (cognitive work elements).
Figure 1 shows an abstraction of the cycle
of operations producing the collection of
CWEs (from table 1) for an operational
assessment work task.

Once the list of related CWEs is
defined, we must determine how to
model the CWEs as a pattern. We
should represent the models themselves
in terminology appropriate for systems
engineering work, since a significant goal
of using CWEs is to capture and docu-
ment cognitive requirements.

We have a variety of existing models
for integrating human systems integra-
tion requirements and cognitive require-
ments into the systems engineering
design documentation. One example
includes integration of cognitive require-
ments into a Department of Defense
Architecture Framework representation
(O’Malley et al. 2008). Developing a
pattern representation for the CWE is
a slightly different issue, however. The
most useful patterns are those that could
be introduced as advanced graphical
user interface components, as a library
module for an existing integrated devel-
opment environment. We would need to
abstract each cognitive work element as a
pattern, complete with one or more rep-
resentative graphical visualizations and
algorithms. These representations would
serve as suggestions for the technologist
implementing the requirement, resulting
in an approach for formally specifying
the CWE models into the software archi-
tecture. One way to implement CWE
operations is to use a dynamic software
wizard to guide the developer through
the CWE options, potentially showing a
sample visual graphic based on the selec-
tions made through the wizard.

Once we complete the wizard for the
CWE element pattern, then we would
automatically inject operational code or
code templates into the code, along with
supportive comments and a reference
(provided by the programmer) to the
cognitive requirement or requirements
met by this CWE. This would make the
CWE widgets helpful as both a com-
munication and prototyping tool. We
would include requirement references in
the instantiated code to produce require-

ments traceability, which is very impor-
tant. At any time, we could review the
code to find an exact correspondence to
specific requirements. This would provide
the technologist a mechanical way to
easily account for all of the requirements,
while also yielding a justification for how
(or why) particular implementations,
visualizations, and algorithms are used
within the system. Figure 2 depicts an
example of mapping functional require-
ments onto CWE patterns.

The complete implementation of
CWESs as modular cognitive design pat-
terns helps the programmer to determine
what requirement is met, what is an
appropriate visualization or algorithm to
implement this CWE, and what parts of
the implementation must be static within
the software, versus what parts can be
dynamically modified by the end user.

Future Work

Many integrated development envi-
ronments already provide the facility to
add advanced third-party plug-ins and
modular extensions. Our contribution
to the state of the technology currently
includes the development of cognitive
work element and cognitive design pat-
tern theory. We expect to use the basic
structure outlined in this article to begin
implementing these ideas for use with
one or more popular integrated develop-
ment environments, with the input of
graphical user interface builders, as the
next phase of this research. There are
clear advantages to including explicit,
reusable cognitive design patterns
(implementations of cognitive work ele-
ments) directly into a software system’s
source code, with traceability back to

» continues on next page

INCOSE INSIGHT April 2009 31



Special Feature

32

Three Principles for Effectively
Addressing Cognition

Sterling Wiggins, swiggins@ara.com

Principle 1: ‘The performance of a system is the result of combined human and
technological performance.

Mission performance is preeminent, not human or technological perfor-
mance: both are necessary when building sociotechnical systems, but neither
is sufficient. The goal is to combine human and technological capabilities
to build systems that transcend the limitations of the individual human or
technology.

Principle 2: Cognitive aspects of work must be addressed if the right system is
to be built right.

Cognitive systems engineers do not need to participate in the development
process to achieve good system design, but Hawless systems engineering with-
our consideration for cognitive aspects of the system can resulr in building the
wrong system, right. Cognitive systems engineering is a structured approach
for ensuring that cognitive aspects are addressed and thar the right system is
built right. It serves to identify and describe system features that are linked to
the cognitive work that needs to be supported.

Principle 3: Cultivare a culture of productive and informed compromise.

Compromises in human and technical areas will be necessary to build a
system on time, on schedule, and that is acceptable to its intended operators.
Program managers and lead systems engineers need to populate the project
environment with the attitudes, tools, and opportunities required for produc-
tive compromise. For example, cognitive systems engineers should sit on the
systems engineering and other integrated product teams so that there will be a
continual dialogue.

Bibliography of Cognitive Engineering Resources

Burns, C. M, and J. R. Hajdukiewicz,
Ecological Interface Design. Boca Raton, FL:
CRC Press, 2004

Cook, N, and E. Durso. Stories of Modern
Technology Failures and Cognitive Engineering
Successes. Boca Raton, FL: CRC Press, 2008.

Crandall, B, G. Klein, and R. R. Hoffman.
Working Minds: A Practitioner’s Guide to
Cognitive Task Analysis. Cambridge: MIT
Press, 2006.

Deal Corp., Web site for the Acquisition
Practitioner Support Environment.
http://acprac.com.

Klein, G. Sources of Power: How People Make
Decisions. Cambridge, MA: MIT Press,

Norman, D. A, The Design of Everyday Things.
New York: Doubleday, 1990.

Rasmussen, J., A. M. Petjersen, and L. P.
Goodstein, Cognitive Systems Engineering,
New York: Wiley, 1994,

SA Technologies, Professional Publications.
http://www.satechnologies.com/publica-
tions. (Situational awareness approaches.)

TRACE-SE: The Resource for Applied Cognitive
Engineering and Systems Engineering.
https://www.trace-se.com.

Usernomics. User Interface Design.
http://www.usernomics.com/user-interface-
design.htmi.

Vicente, K. ]. Cognitive Work Analysis.
1998, Mahwah, NJ: Lawrence Erlbaum, 1999,
MITRE Corporation. 4 Survey of Cognitive
Engineering Methods and Uses.
http://mentalmodels.mitre.org/cog_eng/.

Volume 12No.1  INCOSE INSIGHT

Schmidt et al.  continued

the cognitive requirements. The fielded
software system will be easier to develop,
maintain, and use, with a demonstrated
capacity for meeting the user’s system
expectations and supporting the work
requirements.

References

Conrad, K., and T. Stanard. 2007. Advanced
design patterns: Enabling designers of complex
systems. Proceedings of the 2007 International
Conference on Software Engineering Research and
Practice (Las Vegas, NV): 1—7.

Hale, C. R. 2006. Executable requirements for
visualization design. Paper presented at the
2006 Human Factors and Ergonomics Society
Conference (San Francisco, CA).

. 2008. Visualization design using an
integrated joint cognitive system development
methodology. Proceedings of the 2008 Human
Factors and Ergonomics Society Conference.

Hale, C. R., and V. Schmidt. 2008. Cognitive
design patterns. Paper presented at of the 2008
International Conference on Software Engineering,
Research, and Practice (Las Vegas, NV):
611—616.

. 2008. Four challenges, and a proposed
solution, for cognitive system engineering—
system development integration. Paper presented
at the 2008 Industrial Engineering Research
Conference (Vancouver, BC).

Haskins, C., ed. 2007. Systems engineering hand-
book: A guide for system life cycle processes and
activities. Version 3.1. Rev. by K. Forsberg and
M. Krueger. Seattle: INCOSE.

O’Malley, D., Zall, J., Colombi, J., and Carl, J.
2008. Integrating cognition into system design.
Proceedings of the 2008 International Conference
on Software Engineering, Research, and Practice
(Las Vegas, NV): 604—610.

Stanard, T., and J. Wampler. 2005. Work-centered
HCI design patterns. Paper presented at the
conference, INTERACT 2005: Communicating
Naturally through Computers (Rome, Iraly).

Stanard, T., Osga, G., Wampler, J., and Conrad,
K. 2006. HCI design patterns for C2: A vision
for a DoD design reference library. Paper
presented at the 2006 Command & Control
Research and Technology Symposium (San
Diego, CA).




