Extracting Rules

from the Aggregate Feedforward Neural Network

Vincent A. Schmidt
C.L. Philip Chen
Wright State University
Dayton, OH, U.S.A.

Abstract

The Aggregate Feedforward Neural Network
(AFFNN) is a connectionist model that
learns the relationships leading to all K
input attributes using a single neural net-
work. This unified network behaves as if it
is an aggregation of K distinct metworks,
each trained for a specific target. This
paper describes the creation of the AFFNN
using one of the well-known Three MONK’s
Problems, and then demonstrates the use of
a decompositional rule extraction approach
for obtaining and expressing the knowledge
learned by the AFFNN.

Keywords: Neural Networks, Data Min-
ing, Rule Generation

1 Introduction

It is increasingly common to find connec-
tionist models performing data mining opera-
tions, discovering useful and non-obvious pat-
terns in collections of data. Various neural
network architectures already actively partic-
ipate in the data mining arena. One exam-
ple is the Knowledge-Based Artificial Neu-
ral Network (KBANN) system by Shavlik,
Towell, Craven, and other researchers, which
creates a neural network with weights and
links initialized based on available domain
knowledge and can extract M-of-N and rules
[1, 2, 3]. Another such system is the Neu-

roRule system, a feedforward neural network
with a single hidden layer. This system uses
hyperbolic tangent activation functions along
with a penalty-based error function and spe-
cialized pruning steps reduce the size of the
network before applying a decompositional
rule extraction algorithm [4, 5].

Although these systems are reasonably
flexible, they suffer from a characteristic com-
mon to most neural networks: the desired
target attribute set must be determined prior
to training. For an arbitrary dataset with K
distinct attributes, establishing the relation-
ships of each of the K attributes as a function
of the remaining attributes in the dataset will
require training and interpreting K separate
neural networks.This can be both tedious and
time-consuming.

An interesting connectionist system that
circumvents this problem is the Aggregate
Feedforward Neural Network (AFFNN), a
connectionist system that learns individual
dataset attributes as a function of the re-
maining attributes within the same neural
network [6]. The AFFNN is a system con-
sisting of a connectionist model and a small
set of specialized support functions promot-
ing the desired behavior. The network itself
is a fully-connected feedforward neural model
with a single hidden layer. This network con-
tains the same number of nodes in the in-
put and output layers. Hidden nodes often
use sigmoid activation functions while out-
put nodes are typically linear, but this is not

a strict requirement for the AFFNN.

The AFFNN associates a collection of in-
put and output nodes with each of the K
attributes in the dataset. All attributes are
used in training as both the source and the
target data. This network is not autoassocia-
tive, however, because the network outputs
for a specific attribute are guaranteed by the
AFFNN system to rely only on the remaining
attributes, a feature enforced by the system’s
support functions. The nature of this system
demonstrates that the relationships leading
to all K attributes can be learned simulta-
neously within a single neural network. This
allows rules to be extracted from the trained
AFFNN system for any arbitrary attribute
without requiring a priori target attribute se-
lection required in other systems.

The following sections of this paper briefly
describe the AFFNN as it supports rule ex-
traction for the example provided.

2 AFFNN Creation and
Training

The activities required to create and train an
AFFNN are similar to those used for other
neural models. The K attributes of the
dataset should be carefully selected and en-
coded using some binary encoding scheme,
such as discretization or thermometer encod-
ing. The size of an encoded input vector con-
taining all attributes defines the number of
AFFNN input and output nodes. The num-
ber of nodes in the hidden layer should be de-
termined empirically, and should be expected
to be a larger when describing an AFFNN
than in cases where a traditional neural net-
work with only a single output attribute is to
be generated.

The user examining output vector compo-
nents corresponding to the encoding of a par-
ticular attribute A;, 1 < 4 < K can be as-
sured that attribute A; did not contribute
as an input to the network for the output
nodes in question. (Although A; is permit-
ted to contribute to all other output nodes.)

The AFFNN relies on a set of specialized pre-
processing and postprocessing functions to
maintain exclusion between attributes dur-
ing training. The preprocessing function
replicates each input case K times, mask-
ing out consecutive attributes. This process
increases the number of input vectors by a
factor of K. The preprocessed vector set is
used as input cases for AFFNN training. Ev-
ery input case presented to the network pro-
duces an output vector. The postprocessing
function takes each set of K output vectors
and uses a similar masking scheme to “col-
lapse” them back into a single output vector,
reducing the final number out output cases
to match the number of original input cases.
All encoded portions of postprocessed out-
put vectors corresponding to individual at-
tributes A;, 1 < i < K are valid for every
attribute. That is, the postprocessing func-
tion modifies the network outputs such that
each attribute represented in the output vec-
tor is guaranteed to be a function only of the
remaining attributes.

The AFFNN also uses a custom perfor-
mance function during training to support
the user-selected supervised training algo-
rithm. This function intercepts intermediate
values immediately before network training
error is computed. Once obtained, the in-
termediate values are refined by clearing spe-
cific parts of the intermediate outputs that
should not have an impact on network error,
an operation performed using the same mask
employed by the preprocessing and postpro-
cessing functions. Thus the custom perfor-
mance function ensures that only the links
leading to the nodes supporting a specific at-
tribute will have their weights modified. This
feature prevents the weights leading to nodes
of one output attribute from interfering with
the training the weights for output nodes of
another attribute. The performance func-
tion then passes these processed results to the
original performance function for the stan-
dard error processing needed by the super-
vised training algorithm. These capabilities
are described in more detail in the AFFNN

references. Note that the AFFNN is not con-
strained to use a specific supervised training
algorithm or error function; it can use many
training algorithms and error functions with-
out modification.

The resulting network output is a collec-
tion of output vectors with the same number
of elements as the input vectors. The rele-
vant portions of these vectors are the result
of expressing each attribute in terms of the
remaining attributes. The trained AFFNN is
also capable of classifying previously unseen
data. The next objective is to methodically
extract a series of rules from the trained net-
work such that these rules correctly express
the relationships learned by the solution net-
work. These rules are also capable of classi-
fying previously unseen data.

3 Rule Extraction

Decompositional approaches are frequently
used to extract rules from connectionist sys-
tems. Such algorithms use weight and bias
information from within the trained network
in order to create relevant rules. The tech-
nique we implemented is similar in some re-
gards to the RX algorithm used in the Neu-
roRule system, in that discretized hidden
node outputs are generated and considered
for rule production [4, 7]. Although we cur-
rently use a custom-defined strategy and im-
plementation, any reasonable rule extraction
algorithm could potentially be used.

Figure 1 depicts an AFFNN architecture
trained for an arbitrary dataset with seven
attributes, where each attribute is encoded
into a collection of nodes. The boxes around
sets of input and output nodes in the figure
indicate the number of nodes encoding each
attribute. Many links were consolidated to
the attribute level in the figure to promote
clarity. In reality, the network is fully con-
nected from all nodes at the input layer to the
hidden layer, and from all hidden layer nodes
to all nodes in the output layer. According
to the definition of the AFFNN, examining
nodes for a particular output attribute en-

Al Al

|

\{\\"ll{

\\
A2 \\\\\e=@:
N
XS
N

A2

X7
NS4 g{
L

A3 A3

A4 A4

A5 A5

I"ll ‘
AR
/ T
TR
///’%Ax&g
QA

/.

///'0\

A6 A6

A7 A7

O O‘O O‘O O O O‘O @) O‘O O‘O O O‘O @) O‘

0000000000000 000000

53
38
28
*g

Figure 1: For a Single AFFNN Attribute

sures that the same attribute did not con-
tribute to the network training. For example,
when output attribute A7 is the attribute of
interest, only the links leading from the hid-
den layer to the output nodes corresponding
to attribute A7 are examined in this layer,
and the contributions of all A7-related links
from the input layer to the hidden must be
ignored. This configuration is indicated by
the solid (contributing) and dashed (noncon-
tributing) links in the figure. This view of
the trained network exhibits the outputs on
the basis of individual attributes, with each
attribute expressed as a function of the re-
maining attributes. Rules can be produced
describing these relationships.

The first step of rule extraction is to iden-
tify the output node for which rules are de-
sired, then discretize the activation values
produced by the hidden nodes leading to this
output. The selection of one discretized out-
put from each hidden node defines a single
test case. For small to medium-sized net-
works, there are not generally very many
clusters of discretized activation values, so

determining all combinations of values pro-
ducing the desired output is a straightfor-
ward task. The valid combinations of val-
ues are called “candidate expressions” for the
AFFNN system.

Candidate expressions consist of terms,
where each term is one of the discretized
hidden node values. Inputs applied to the
input nodes produce values that are mem-
bers of the discretized hidden node output
sets. A combination of inputs producing all
terms in a candidate expression is a valid
solution for the specified output node, and
is added to the solution set. Since inputs
are frequently encoded when training neu-
ral networks, it can be impractical to test
all combinations of the encoded inputs due
to combinatorial explosion. We have devised
an effective method to relax the dimension-
ality of such data by remapping it back into
a space that more closely corresponds to the
original input space before searching for valid
solutions [8]. This relaxation technique has
been demonstrated to significantly reduce the
time and complexity of finding valid rules
when using this decompositional extraction
approach.

When valid solutions have been collected
and simplified, it is a simple exercise to gen-
erate a series of if-then rules representing
the knowledge expressed by the solution set.
These rules are easily readable by subject
matter experts and are manifested in a form
capable of processing input cases indepen-
dently of the trained AFFNN. Both the ex-
tracted rules and the trained AFFNN are
products that can continue to be used for
classifying new data.

The rule extraction algorithm represents
its results using MATLAB notation. These
results are encapsulated within a MATLAB
function, allowing the rules to be applied
against other sample data cases. The accu-
racy of the rules produced and encoded by
the rule generator depends on the accuracy
of the neural network from which they are
obtained.

4 Example

The Three MONK’s Problems are fabricated
datasets in which robots are described us-
ing a combination of six discrete-valued at-
tributes [9]. These datasets were originally
designed to assist in the comparison of vari-
ous classification algorithms. Robots belong
to the solution set of the second of these
problems, problem M, when exactly two of
the six attributes are assigned to their initial
values. The attributes and their options in-
clude: head shape (round, square, octagon),
body shape (round, square, octagon), smil-
ing (yes, no), holding (sword, balloon, flag),
jacket color (red, yellow, green, blue), and tie
(yes, no). There are 432 exhaustive combina-
tions of these attributes.

The AFFNN adds another attribute,
in_solution_set (yes, no), for a total of 7 at-
tributes. Simple mutually exclusive encoding
extends these attributes to 19 neural network
inputs, corresponding to each combination of
the encoded values of all 7 attributes. The
AFFNN was designed as a fully connected 19-
12-19 network with sigmoid activation func-
tions in the hidden layer and linear activation
functions at the output.

The training set consists of the specified
169 training vectors for problem My, encoded
into the 19-element input vectors. Training
for 1000 epochs was completed in just over
6 seconds on a dual Pentium-II Linux-based
system using a custom AFFNN MATLAB im-
plementation. Problem Ms was designed to
portray a single relationship in which robots
possessing various combinations of the origi-
nal six attributes belong to the solution set.
Examining AFFNN output from this per-
spective, there were no misclassifications in
the trained network.

Figure 1 is actually the AFFNN architec-
ture used for training and extracting rules
from Ms. Attribute seven (in_solution_set)
is the attribute of interest in this example,
so the figure correctly reflects the node and
link configuration used during rule extrac-
tion. The first node in this set represents

in solution set=no, and the second node
represents in _solution set=yes.

Rule extraction proceeds by selecting the
output node for which rules should be ex-
tracted, which in this case is the output
node representing the attribute/value com-
bination in_solution set=yes. Discretizing
and testing hidden node values as described
above yields 3 candidate expressions, all
based solely on values of hidden nodes 3, 6,
and 7. This means that the contributions of
only three AFFNN hidden nodes determines
the ultimate outcome for the selected output
node. The automated rule generation pro-
cess examined all relevant combinations of
(relaxed) inputs producing the values of each
expression and generated 15 rules after sim-
plification, the minimum number of rules re-
quired to faithfully represent the solution to
problem Ms. Generated rules follow a basic
structure that is easy to interpret:

if (

(x1 <= 1) and
(x2 <= 1) and

(x3 > 1) and
(x4 > 1) and
(x5 > 1) and
(x6 > 1)

) then result=true;

This is one of fifteen My rules correctly de-
scribing the desired characteristic: exactly
two of the six attributes have their initial val-
ues. Specifically, this rule states that the first
and second attribute have their initial values
and the other attributes do not. The MAT-
LAB function containing the rules extracted
from Ms correctly classifies all input cases as
a function of attributes Ai..Ag with no mis-
classifications.

5 Summary

The AFFNN is a novel connectionist archi-
tecture that simultaneously learns the rela-
tionships of each of the K attributes for a
given dataset with respect to the remaining

attributes. The techniques used for training
the AFFNN prevent the network from be-
coming autoassociative.

One key benefit to using the AFFNN is
that rules can be extracted for any attribute
once network training is completed. Since the
AFFNN behaves as if it were a unified collec-
tion of individual networks, rules can be ex-
tracted from any output node independently
of the rest of the outputs. This feature al-
lows the user to defer the selection of poten-
tially interesting outputs until after training
has completed, without taking a significant
performance hit (i.e. needing to create and
train an entirely new network) when examin-
ing rules for other outputs and attributes.

The M5 problem presented here is clearly a
small example, but it is able to demonstrate
the fundamental issues concerning the basic
training and rule extraction paradigm used
with the AFFNN. This problem is also useful
as a benchmarking problem, since it is com-
monly used for connectionist and other data
mining tests. (The My problem has been
most helpful in validation testing, to ensure
nothing has been “broken” as rule extraction
research continues, but it is not an ideal prob-
lem for exhaustive AFFNN training, since
only a single attribute has a well-defined and
popular relationship.) Solving this caliber
of problem and automatically generating the
corresponding rule set is a proof of concept
that merely qualifies the AFFNN for addi-
tional research.

There is still work to be done as the
AFFNN and its rule extraction mechanism
is developed. Like other neural networks,
topology configuration, activation function
and training algorithm selection, and conver-
gence issues all impact successful use of the
AFFNN. In addition, rule extraction tech-
niques are currently limited to an AFFNN
trained using various forms of binary-encoded
data. These and other issues remain to be
addressed as research continues.

References

1]

Geoffrey G. Towell and Jude W. Shavlik.
Extracting refined rules from knowledge-
based neural networks. Machine Learn-

ing, 13:71-101, 1993.

Geoffrey G. Towell and Jude W. Shav-
lik. Using symbolic learning to improve
knowledge-based neural networks. In Pro-
ceedings of the Tenth National Conference
on Artificial Intelligence, pages 177-182,
San Jose, CA, 1992. AAAI/MIT Press.

David W. Opitz and W. Shavlik, Jude.
Dynamically adding symbolically mean-
ingful nodes to knowledge-based neu-

ral networks. Knowledge-Based Systems,
8(6):301-311, 1995.

Hongjun Lu, Rudy Setiono, and Huan
Liu. NeuroRule: A connectionist ap-
proach to data mining. In Proceedings of
the 21st VLDB Conference, Zurich, Swiz-
erland, 1995.

Rudy Setiono. A penalty function
for pruning feedforward neural networks.
Neural Computation, 9(1):185-204, 1997.

Vincent A. Schmidt and C. L. Philip
Chen. Defining an aggregate feedforward
neural network. Submitted to ANNIE02
Conference, 2002.

Hongjun Lu, Rudy Setiono, and Huan
Liu. Effective data mining using neu-
ral networks. In Proceedings of the 21st
VLDB Conference, Zurich, Swizerland,
1995.

Vincent A. Schmidt and C. L. Philip
Chen. Data dimensionality relaxation
for neural networks trained with encoded
data — an application in rule extrac-
tion. Submitted to ANNIEO2 Conference,
2002.

S.B. Thrun, J. Bala, E. Bloedorn,
I. Bratko, B. Cestnik, J. Cheng,
K. De Jong, S. Dzeroski, S.E. Fahlman,

D. Fisher, R. Hamann, K. Kaufman,
S. Keller, I. Kononenko, J. Kreuziger,
R.S. Michalski, T. Mitchell, P. Pachowicz,
Y. Reich, H. Vafaie, W. Van de Welde,
W. Wenzel, J. Wnek, and J. Zhang. The
MONK’s problems: A performance com-
parison of different algorithms. Technical
report, Carnegie Mellon University, 1991.
CMU-CS-91-197.

