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Abstract

This paper introduces a mechanism for
generating human—readable and machine—
executable rules that characterize the
money—price relationship, defined as the
relationship between the rate of growth of
the money supply and inflation.  Divisia
component data is used to train an Aggregate
Feedforward Neural Network (AFFNN), a
general-purpose  connectionist architecture
originally developed to assist with data min-
ing activities. The rules extracted from the
trained AFFNN meaningfully and accurately
describe inflation in terms of the Divisia
component dataset.
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1 Introduction

If macroeconomists ever agree on anything,
it is that a relationship exists between the
rate of growth of the money supply and infla-
tion. The conventional way of measuring the
amount of money circulating in an economy is
to simply sum the various constituent liquid
liabilities of commercial and savings banks.
However the belief is widely established that

this method of arriving at broad money ag-
gregates is seriously flawed and based on un-
tenable assumptions, as shown in Belongia
[1]. From a micro-demand perspective it is
hard to justify adding together component
assets having differing yields that vary over
time, especially since the accepted view al-
lows only perfect substitutes to be combined
as one “commodity.”

Barnett pioneered the use of the Divisia
monetary aggregate as an alternative to sim-
ple sum aggregation [2,3]. By drawing on sta-
tistical index number theory and consumer
demand and aggregation theory, he advo-
cated the use of the Divisia chain-linked in-
dex numbers as a means of constructing a
sophisticated weighted index number mea-
sure of money. A set of weights are re-
quired in the formation of the aggregate to
measure the flow of monetary services pro-
vided by the stock of monetary assets. The
potential advantage of Divisia monetary ag-
gregates is that the weights can vary over
time in response to shifts in the yield curve
and to financial innovation, which alter the
opportunity costs of holding monetary as-
sets. (See Fisher, Hudson, and Pradhan [4]
and Mullineux [5] for detailed discussions on
the construction of Divisia monetary aggre-
gates and associated problems.) Proponents
of weighted index number aggregation con-



tend that Divisia M4 endogenizes at least
some of the major innovations that clearly
distorted simple sum M4 in the 1980s, es-
pecially the payment of competitive interest
rates on checking deposits.

Clearly, the foundations of the construc-
tion of monetary aggregates are well rooted
in monetary aggregation theory and require
extremely strong assumptions. (Barnett and
Serletis give a detailed treatment of the the-
ory of monetary aggregation [6].) However,
the underlying philosophy of the current re-
search is that all assumptions can be weak-
ened and the Divisia formulation can still be
improved. Recent research has focused on ac-
counting for the riskiness of the asset in the
index construction; see Barnett et al [7,8] for
such efforts in the USA and Drake et al [9]
and Binner and Elger [10] for approaches in
the UK.

Can a new empirically weighted measure
of money be constructed that more closely
captures the monetary services flow provided
by the component assets? The answer to
this question may lie in the use of the neural
network, one of many tools from the realm
of Artificial Intelligence. Connectionist mod-
els, as neural networks are also called, tend
to be robust with respect to noisy data, of-
ten able to learn and generalize with a high
degree of accuracy. Fast desktop comput-
ers and the availability of inexpensive and
high-quality neural network design software
grants the casual researcher easy access to
these tools without requiring a steep learn-
ing curve or advanced knowledge of connec-
tionist principles. This is especially helpful,
since simple networks often provide great in-
sight into the behavior and relationships of
the data being examined. The use of neural
networks to learn the relationship between
Divisia asset components and inflation was
first attempted very successfully for UK Di-
visia M4 by Gazely and Binner [11]. They
demonstrated that a properly generated neu-
ral network is expressive enough to learn re-
lationships between Divisia components and
inflation to the extent that even a reason-

ably simple architecture can outperform tra-
ditional Divisia measurements under many
circumstances, and performs comparably at
its worst.

Unfortunately, the trained neural network
still guards its secrets carefully; it can cat-
egorize and classify previously unseen data
and predict appropriate outcomes, but casual
examination of network weights is not suffi-
cient to comprehend its operation. Efforts
to describe the “black box” neural model in
understandable and identifiable terms are nu-
merous and ongoing [12,13]. Such efforts of-
ten require specialized neural models and are
most appropriate in limited domains.

The Aggregate Feedforward Neural Net-
work (AFFNN) is a general-purpose con-
nectionist model that does not unnecessar-
ily restrict the domain or training capabil-
ity of the modeler [14]. The goal of the
AFFNN is to take collection of K inputs
and discover the relationships among them,
non-autoassociatively.  The resulting net-
work lends itself to rule extraction, such that
the learned relationships can be expressed in
terms the original inputs by a series of read-
able and executable if-then rules [15].

The following sections of this paper briefly
describe the AFFNN and its utility in learn-
ing specific relationships using the monetary
component asset data of UK Divisia M4!.
The AFFNN architecture and training are
presented along with a sample generated rule
and a comparison to a typical traditional
feedforward neural model where rules are not
generated.

2 AFFNN Using Divisia

Components

The AFFNN is a supervised fully-connected
feedforward connectionist model, typically
with a single hidden layer, where the input

!Component data is available on the Internet at
http://www.bankofengland.co.uk/mfsd/index.htm
(Bank of England Statistical Abstracts, Part 2,
Section A, tables 12.1 and 12.2).



and target vectors are identical and contain
K encoded attributes. The AFFNN allows
the user to select almost any supervised train-
ing and performance functions, but also con-
tains an exclusive set of additional functions
enforcing the network’s ability to learn at-
tributes 4;, 1 <1 < K, as a function of the
remaining attributes for every instance of ¢ si-
multaneously within the same network. More
formally, if notation A;= represents the set of
attributes such that all attributes except for
A; are included in A;+, and O; is the set of at-
tributes including only A;, then the network
endeavors to learn the functions:

0; = f(A#), VI<i< K (1)

simultaneously for all values of ¢ when such
functions exist, given an adequate number
of hidden nodes and sufficient network train-
ing. There is no restriction on the supervised
training algorithm or network performance
function used, since there are unique training
and performance function wedges supporting
the AFFNN, functions not seen by the user,
interacting with the functions the user has
selected.

The task at hand is the application of
the AFFNN to Divisia component data,
generally used to compute Divisia indices.
This data is automatically clustered and
thermometer-encoded for use in the neural
network. An AFFNN using quarterly Divisia
components, expressed as a percentage in-
crease from values exactly four quarters ear-
lier, includes attributes:

e Notes and Coin (NC) encoded into 7 lev-
els,

e Non-Interest Bearing Bank Deposits
(NIBD) encoded into 14 levels,

e Interest Bearing Bank Sight Deposits
(IBSD) encoded into 4 levels,

o Interest Bearing Bank Time Deposits
(IBTD) encoded into 7 levels, and

e Building Society Deposits (BSD) en-
coded into 7 levels.
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Figure 1: Divisia AFFNN Block Diagram

These five attributes, along with inflation
growth rate (also expressed as a percentage
of increase and encoded into 4 levels), com-
prise six component attributes for AFFNN
training. Figure 1 shows a block diagram
of an AFFNN using these components. To
conserve space, this figure depicts a 19-12-19
AFFNN, although the actual network used
in this research effort is a 43-15-43 model (43
sigmoid nodes in the input and hidden lay-
ers, and 15 linear nodes in the output layer).
Rules are generated using the weights and
values propagating along the solid lines in the
figure, with the dashed lines being ignored.
In this example, attribute A6 is the only at-
tribute receiving weights at the output nodes,
but does not contribute as an input.

The raw Divisia component data is avail-
able as quarterly figures from Q1 of 1977
through Q1 of 2001, yielding 96 exemplar vec-
tors. Computing percentage of change for
each successive corresponding quarter (the
same quarter in the previous year) reduces
the available data to 94 exemplars. The
AFFNN was trained with 80% (75 vectors)



of the exemplars selected at random, and the
remaining 20% (19 vectors) were set aside
for validation and testing. Training was per-
formed for 4000 epochs (943 seconds) using
a custom Matlab model?. Training mean-
squared error (MSE) was 0.0079, with 93.3%
of the training data and 84.2% of the test
data properly classified for the inflation com-
ponent of the AFFNN output.

3 Rule Generation

As mentioned in the previous section, an
automated clustering algorithm determined
that inflation data (percentage change in
growth rate of price level) should be reclassi-
fied into four distinct levels, specifically:
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As anticipated, the AFFNN learned the gen-
eral function®:

f(NC, NIBD, IBSD, IBTD, BSD)
= LCL‘7 L.’L‘ € {Lla L2a L3a L4}

(2)
Rule generation techniques applied to the
trained network allow a series of relationships
to be extracted from this network, written in
terms of the original attributes used for net-
work training. The rule extraction and gen-
eration procedures are described in Schmidt
and Chen [16].

*Linux-based dual 300 MHz Pentium II PC with
128 Mb RAM

3Traditional feedforward neural networks would
also be capable of learning such relationships; the
chief advantage of the AFFNN is that it learns the
other five sets of relationships, for NC, NIBD, IBSD,
IBTD, and BSD, simultaneously within the same net-
work. The functions for the Inflation attribute, rep-
resented by L, in Equation 2, are the only ones of
immediate interest in this study.

if {
(nc <= -0.004833) )

& ((nibd <= -0.091788)

| (nibd > -0.010042
& nibd <= 0.049695)

| (nibd > 0.082643))

& (ibsd <= 0.148378) )

& (ibtd > 0.008503) )

& (bsd > 0.082032)

} then return true;

Figure 2: Example Expression for L3

The rule extraction algorithm is a typical
decompositional technique that creates rules
by examining and combining the activation
values within the trained AFFNN. Rules can
be requested for each data class of a speci-
fied attribute. For example, requesting the
rules for L3 yields 408 distinct expressions
described in terms of the original attribute
values. As an example, one of the generated
expressions is shown in Figure 2. This ex-
pression describes one set of conditions under
which Lj is true. If the values of NC, NIBD,
IBSD, IBTD, and BSD satisfy any of the 408
generated expressions, then Lz (“Inflation %
change is in the range (0.0558,0.1116]") is sat-
isfied.

Such rules are easy to interpret and are
also simpler to validate by econometricians.
Clearly it is easier for econometricians to
comprehend and comment on a rule such as
the one shown in Figure 2 than to grapple
with internal neural network weights, biases,
and activation functions directly.

4 Discussion of Results

One advantage of rule generation is that the
generated rules are actually executable code
and can process data independently of the
original AFFNN. Running the training and
testing data through the rules generates re-



sults very similar to the results of the original
network. (The rule extraction algorithm re-
laxes a few constraints that may allow the
generated rules to process borderline cases
differently than the AFFNN would compute
them, so absolutely identical AFFNN and
rule results are not expected in all cases.)
With respect to the encoding of the Divisia
component data as exercised, generated rules
tended to use all five attributes, indicating
the relative importance of all attributes. Ex-
pression simplification, one step of the rule
generation process, commonly folded two or
more levels of the NIBD component data to-
gether (as in Figure 2), showing the single
rule would be true for two or more levels
of the attribute. This also indicates that
specific levels of the NIBD data were often
not key contributors, but that general lev-
els of NIBD did play a role in determining
system outcomes. This was also true for
the BSD attribute. In contrast, the system
rarely folded IBSD or IBTD together, indi-
cating that the inflation growth rate may be
closely tied to specific levels of these two at-
tributes. These results, which might initially
seem to conflict with earlier sensitivity analy-
sis findings by Gazely and Binner [11], are not
alarming, since the AFFNN observations are
based on the importance of particular levels
of attributes in certain equations, rather than
weight sensitivities in the overall network.
To form a basis for comparison, an in-
dividual supervised feedforward neural net-
work was created and trained using the same
data encoding as the AFFNN. There were
39 (43-4) encoded inputs, 6 sigmoid nodes in
the hidden layer, and 4 linear nodes at the
output layer. This network was trained for
4000 epochs (94 seconds, MSE=0.004789, al-
though MSE was stable near 1000 epochs)
with the identical 80% training dataset, and
tested with the identical 20% testing dataset.
This system yielded 97.33% training accu-
racy and 78.95% testing accuracy, results
very comparable to the results obtained by
the AFFNN (93.3% and 84.2%, respectively).
Although the decompositional rule extrac-

tion technique applied by the AFFNN is gen-
eral enough to handle general-purpose feed-
forward neural networks, it is currently only
implemented to process the AFFNN struc-
ture, so no rules were generated for the in-
dividual network. Regardless of this draw-
back, it is clear that the AFFNN performed
nearly as well as the independent network on
the training data, and was able to generalize
better on the test data. This strengthens ar-
guments in favor of using of the AFFNN for
such monetary component asset data.

Given the size of the dataset and the
small number of attributes, a large num-
ber of rules were extracted from the trained
AFFNN. Such an unexpectedly liberal quan-
tity of rules clearly suggests one or more of
these conclusions:

1. the data has not been optimally encoded
or clustered well enough for learning to
take place,

2. the relationships among these data are
extremely complex and cannot be ad-
equately captured with the expressive
power utilized, or

3. there is not a sufficient mechanism to ac-
curately capture the relationships, and
the network is merely learning a some-
what random set of relationships based
on the data available.

Given that other techniques such as those
used in Gazely and Binner [11] have been able
to learn these relationships, the first point
is the most likely candidate conclusion, with
the second point a distant second and the
third point being possible, but highly un-
likely. Whatever the actual reason, the re-
sults obtained in this proof-of-concept study
demonstrate the potential complexity of at-
tempting to describe relationships in even
small datasets.

5 Summary

The Aggregate Feedforward Neural Network
is helpful in its ability to both generalize and



describe the resulting relationships. Apply-
ing a simple decompositional technique to
the AFFNN vyields a collection of descrip-
tive if-then rules which may prove insight-
ful in identifying or explaining the relation-
ships between various monetary assets and
the corresponding growth rate of inflation.
The network construction is straight forward
and the AFFNN trains reasonably quickly.
Extracted Divisia component rules are ex-
pressed in terms of the component names and
are simple to read and validate by econome-
tricians.

The nature of the rules generated for Di-
visia component asset data underscores the
importance of selecting appropriate heuris-
tics to allow relationships to be discovered
and properly expressed. Inappropriate en-
coding or excessively fine granularity results
in a lack of ability to adequately learn rela-
tionships, and may also contribute to exces-
sive quantities of rules being extracted from
the network. Selecting the proper values
and combinations of attributes is a signifi-
cant step. This study settled on one obvi-
ous encoding mechanism (percentage varia-
tion among values, with automated cluster-
ing and thermometer encoding), but other
encoding mechanisms may be more appropri-
ate. Closer examination of the rules gener-
ated for each output level may also give in-
sight into such areas.

Additional research will investigate other
encoding mechanisms in an effort to simplify
both the number and complexity of gener-
ated rules. It would also be beneficial to
examine alternative connectionist approaches
for both learning and expressing the per-
centage changes in the Divisia component
relationships as they apply to rates of in-
flation growth. The full expressive power
of the AFFNN comes into play only when
there are multiple relationships among at-
tributes. Lack of such relationships cripples
the AFFNN'’s ability to generalize effectively.
It is not yet clear if that is the case with Di-
visia data.

The process described here clearly identi-
fies the Aggregate Feedforward Neural Net-
work as a useful tool for examining relation-
ships among the data components typically
used to compute Divisia indices. Future re-
search will evaluate the performance of the
new UK Divisia, constructed using the rule
generation mechanism described here, in a
simple inflation forecasting experiment. Ad-
ditional studies and comparisons with con-
temporary and traditional techniques will as-
sist in identifying the role of connectionist
models in this revolutionary work.
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