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h LaboratoryDayton, Ohio USA Jane M. BinnerAston UniversityBirmingham, UKAbstra
tThis paper introdu
es a me
hanism for gen-erating a series of rules that 
hara
terizethe money�pri
e relationship, de�ned as therelationship between the rate of growth ofthe money supply and in�ation. Divisia
omponent data is used to train a sele
tion of
andidate feedforward neural networks. Thesele
ted network is mined for rules, expressedin human-readable and ma
hine-exe
utableform. The rule and network a

ura
y are
ompared, and expert 
ommentary is made onthe readability and reliability of the extra
tedrule set. The ultimate goal of this resear
his to produ
e rules that meaningfully anda

urately des
ribe in�ation in terms of theDivisia 
omponent dataset.Keywords: Divisia, In�ation, Neural Net-work, Data Mining, Rule Generation1 Introdu
tionGovernment poli
y-makers aim to provide astable ma
roe
onomi
 environment to supporte
onomi
 growth and rising living standards,and the maintenan
e of a low rate of in�ation is
ru
ial for stability. The monetary authoritiestherefore seek to identify indi
ators of ma
roe-
onomi
 
onditions whi
h will signal impend-ing in�ation su�
iently early to allow the ne
-essary a
tion to be taken. E
onomi
 theoristshave traditionally held the view that a long-run relationship exists between the quantity ofmoney and the general level of pri
es. Con�-den
e in this relationship, expressed in terms oflong-run rates of money growth and in�ation,along with an a

umulation of eviden
e sup-

porting a seemingly stable linear demand forbroad money aggregates, led the major 
entralbanks of the world to a

ept monetary target-ing as the means of 
ontrolling in�ation. A spe-
i�
 measure of the rate of growth of moneysto
k, known as a monetary aggregate, is de-rived from the various 
onstituent liquid lia-bilities of 
ommer
ial and savings banks. Formonetarists the ultimate poli
y goal of low in-�ation is a
hieved by keeping the growth of the
hosen aggregate within a target range.Clearly, the foundations of the 
onstru
tionof monetary aggregates are well rooted in mon-etary aggregation theory and require extremelystrong assumptions. (Barnett and Serletis givea detailed treatment of the theory of mone-tary aggregation [1℄.) However, the underly-ing philosophy of the 
urrent resear
h is thatall assumptions 
an be weakened and the Di-visia formulation 
an still be improved. Re
entresear
h has fo
used on a

ounting for the risk-iness of the asset in the index 
onstru
tion; seeBarnett et al [2, 3℄ for su
h e�orts in the USAand Drake et al [4℄ and Binner and Elger [5℄ forapproa
hes in the UK.Many tools have been applied to sear
h forrelationships between monetary aggregates andin�ation. One su
h tool is the neural network,a trainable mathemati
al model that tends tobe robust with respe
t to noise and 
an gener-alize well under many 
ir
umstan
es. Gazelyand Binner su

essfully used feedforward neu-ral networks to investigate the relationshipsbetween UK Divisia M4 assets and in�ation,demonstrating that reasonably simple 
onne
-tionist ar
hite
tures are expressive enough toprove the existen
e of su
h relationships [6℄.Their model was designed to examine sensitiv-ity of the relationships, whi
h were spe
i�ed asweights within the trained network. Additional



e�ort would be needed to extra
t and expressthese relationships.Our own 
ollaborative resear
h started in2002. We trained an Aggregate FeedforwardNeural Network (AFFNN) using Divisia 
om-ponents and 
orresponding in�ation values inorder to evaluate the feasibility of analyzing Di-visia data with this model [7℄. The AFFNNis a general-purpose feedforward 
onne
tion-ist ar
hite
ture designed to dis
over the rela-tionships amongst all network input simultane-ously and non-autoasso
iatively [8℄. A de
om-positional rule extra
tion algorithm inspired byother resear
hers [9,10℄ was designed to operatespe
i�
ally on the AFFNN. This algorithm pro-du
ed a 
olle
tion of Matlab-based human-readable and ma
hine-exe
utable if-then rulesexpressing the dis
overed relationships in termsof the original data [11℄.The AFFNN was initially 
hosen for thiswork be
ause of its existing rule extra
tion al-gorithm. Ongoing resear
h resulted in an ex-panded study of rule generation based on theAFFNN [12℄, moving past the initial proof-of-
on
ept paper from 2003. The 2004 work re-vealed potential issues in 
omputational 
om-plexity, and a short investigation of these is-sues was published in 2005 [13℄. One goal ofthe 
urrent resear
h e�ort is to 
on
entrate onthe quantity and quality of the rules des
ribingDivisia relationships. Sin
e the full potential ofthe AFFNN is not ne
essary for this dataset,
omplexity 
an be redu
ed by retraining theDivisia data using simpler feedforward models,and reimplementing the rule extra
tion pro
essfor these models.The following se
tions of this paper des
ribethe sele
tion of an appropriate feedforwardmodel. This in
ludes a des
ription of the en-
oding used for the monetary 
omponent assetdata of the UK Divisia M4 and 
orrespondingin�ation values. Most importantly, this paperin
ludes a dis
ussion of the de
ompositionalrule extra
tion algorithm and a limited eval-uation of the rules extra
ted from the sele
ted
onne
tionist model.

2 Dataset PreparationHistori
al UK Divisia M4 and 
orrespondingin�ation data was obtained1 in order to in-vestigate the relationship between money sup-ply and in�ation. The training data used for
onne
tionist model sele
tion in
luded quar-terly seasonally adjusted values from Q1 1977through Q1 2001, a total of 97 exemplars. In�a-tion was 
onstru
ted for ea
h quarter as year-on-year growth rates of pri
es. Quarterly dataover the sample period 1977Q1 to 2001Q1 wasused as illustrated in Figure 1. Our preferredpri
e series, the Consumer Pri
e Index (CPI),was obtained from DataStream.The data was prepared using a series of steps.First, for ea
h 
ategory of data, the dataset wasre
al
ulated to 
ompute the per
entage of in-
rease in value for 
orresponding quarters in
onse
utive years. This redu
ed the datasetto 94 exemplars. Then, an automated 
lus-tering algorithm was employed to bin similar(re
omputed) values within ea
h 
ategory ofdata together. The number of bins was alsodetermined automati
ally by the algorithm, de-veloped in S
hmidt [8℄. Finally, the bins wereused to re
ode the dataset using a thermome-ter en
oding s
heme, a 
ommon approa
h fordis
retizing 
ontinuous data for neural network
onsumption.Similar data preparation was performed forthe in�ation values, ex
ept the �nal re
odingused a 1-of-N s
heme instead of thermome-ter en
oding. This was done be
ause our re-
ent 
omplexity redu
tion studies suggestedthat 1-of-N en
oding yields fewer rules thanthermometer-en
oded in�ation values.Table 1 summarizes these results. The nameof ea
h 
ategory is identi�ed, followed by thesymbol used to represent the attribute in thegenerated rule. The �nal two 
olumns are thenumber of 
lusters and the a
tual 
luster rangesgiven in (min,max) format. The �rst �ve at-tributes 
omprise the 39-element binary-valuedinput ve
tors, and in�ation be
omes the four-element binary-valued output. Note that thesebinary-valued ve
tors are only used for trainingand testing the neural models. The �nal rulesextra
ted from the network will be expressed in1Component data is available on the Internet athttp://www.bankofengland.
o.uk/mfsd/index.htm(Bank of England Statisti
al Abstra
ts, Part 2, Se
tionA, tables 12.1 and 12.2).



Table 1: Divisia M4 En
odingCategory (Attribute) Symbol Levels Cluster RangesNotes and Coins NC 7 -0.0333 -0.0243 0.0225 0.0642 0.1604 0.1748-0.0243 -0.0048 0.0642 0.1175-0.0048 0.0225 0.1175 0.1604Non-Interest Bearing Bank Deposits NIBD 14 -0.1273 -0.0918 0.0022 0.0169 0.0826 0.1104-0.0918 -0.0451 0.0169 0.0345 0.1104 0.1543-0.0451 -0.0221 0.0345 0.0497 0.1543 0.1843-0.0221 -0.0100 0.0497 0.0664 0.1843 0.1923-0.0100 0.0022 0.0664 0.0826Interest Bearing Bank Sight Deposits IBSD 4 0.0654 0.1484 0.3069 0.48430.1484 0.3069 0.4843 0.6542Interest Bearing Bank Time Deposits IBTD 7 -0.0929 -0.0480 0.0574 0.1326 0.3271 0.3573-0.0480 0.0085 0.1326 0.24370.0085 0.0574 0.2437 0.3271Building So
iety Deposits BSD 7 0.0062 0.0370 0.0820 0.1114 0.1792 0.19270.0370 0.0627 0.1114 0.14810.0627 0.0820 0.1481 0.1792In�ation INFL 4 -0.0033 0.0124 0.0558 0.11160.0124 0.0558 0.1116 0.1486terms of the 
ontinuous attribute values (per-
entage in
rease).3 Neural Network Sele
tionOur previous resear
h has always been basedon the Aggregate Feedforward Neural Network(AFFNN) model, primarily due to the avail-ability of an existing rule extra
tion 
apabil-ity. While this model has been su�
ient, therules were numerous and 
omplex. We believethat 
ontinuing the resear
h based on a simpler(and typi
al) feedforward model will de
reasethe number and 
omplexity of the generatedrules.We generated a reasonable sele
tion of simi-lar feedforward 
onne
tionist ar
hite
tures asa basis for network sele
tion. Ea
h 
andi-date ar
hite
ture had the same number of in-puts, the same outputs, and 
ontained a sin-gle hidden layer. All nodes in the hiddenlayer used a traditional sigmoid a
tivation fun
-tion (Matlab's logsig fun
tion) and the un
on-strained linear fun
tion (Matlab's purelin) inthe nodes at the output layer.The training data 
onsisted of a randomly se-le
ted set of 75 exemplars (80%), and the test-ing set 
ontained the remaining 19 exemplars(20%). This breakout was 
hosen to 
orrespond

to the original e�orts of Gazely and Binner [6℄.The identi
al data was used for all instan
esof all networks. For ea
h ar
hite
ture shownin Table 2, 25 networks with randomly gen-erated initial 
onditions were trained for 2500epo
hs. (Earlier experiments showed no sub-stantial a

ura
y improvement when trainedpast 2500 epo
hs.) The best network of ea
h
lass is shown in the table (based on the a
-
ura
y of the testing data)2. No instan
e ofmodel training ex
eeded 9.25 se
onds.The table's Ar
hite
ture 
olumn expressesea
h network ar
hite
ture in (# inputs�# hid-den nodes�# outputs) form. The Training(Testing) 
olumn show the number and per-
entage of 
orre
t training (testing) points forall training (testing) data. Sin
e there are four(4) binary-valued outputs in ea
h output ve
-tor, we 
ount ea
h output as a separate datapoint: 75 training 
ases times 4 outputs per
ase yields a potential of 300 data points. (Fortesting, 19 
ases times 4 outputs ea
h yields 76data points.)The table's rule generation 
olumn reportsthe estimated maximum number of rules that
ould be generated using the de
ompositional2All model exe
ution was performed on a Sla
k-ware 10.1 Linux-based (
ustom SMP 2.6.13 kernel) dualAMD Opteron 244 system with 2Gb RAM runningMatlab 5.3 (R11).



Table 2: Ar
hite
ture Comparison (best of 25)Feedforward # Bins Per EstimatedAr
hite
ture Training Testing Hidden Node Maximum # Rules39-4-4 286/300 (95%) 64/76 (84%) 5 4 2 6 24039-5-4 298/300 (99%) 67/76 (88%) 5 4 5 2 3 60039-6-4 300/300 (100%) 64/76 (84%) 8 2 12 2 12 9 4147239-7-4 300/300 (100%) 64/76 (84%) 2 11 13 2 2 9 1 1029639-8-4 300/300 (100%) 66/76 (86%) 17 4 9 5 7 11 7 2 329868039-9-4 300/300 (100%) 66/76 (86%) 4 7 2 10 12 3 2 11 7 310464039-10-4 300/300 (100%) 64/76 (84%) 5 7 2 6 8 8 9 3 13 8 7547904039-12-4 300/300 (100%) 70/76 (92%) 1 13 15 2 15 12 13 15 10 15 2 2 8.2134e+0939-16-4 300/300 (100%) 64/76 (84%) 4 5 8 5 2 13 5 10 10 15 8 14 12 6 9 12 1.3586e+14

Hidden
Layer

Layer
Output

Input
Layer

A1  NC

A2  NIBD

A3  IBSD

A4  IBTD

A5  BSD

A6  INFL

Figure 1: Ar
hite
ture Sele
tionextra
tion algorithm implemented for this sys-tem. This number is based on the number of
lusters of values produ
ed by the hidden layernodes (shown in the table as �# Bins Per Hid-den Node�), and is similar to the approa
h de-s
ribed in our previous work and very brie�yreviewed in the next se
tion. The values inthese 
olumns are displayed as an aid to net-work sele
tion.We de
ided to sele
t the network 
ontaining5 nodes in the hidden layer based on a 
om-bination of the testing a

ura
y and the maxi-mum number of generated rules. This network
on�guration generates a reasonable number ofrules and has a very good training and testinga

ura
y. Without implying any dire
t rela-tionship, the Table shows the testing a

ura
yand maximum number of rules for the best net-work of ea
h 
on�guration. The sele
ted ar
hi-te
ture is also shown in Figure 1 for referen
e.

On
e a 
andidate ar
hite
ture has been se-le
ted, we re-randomize the training and test-ing datasets, re-exe
ute the sele
ted model ar-
hite
ture 1000 times, with 2500 epo
hs oftraining ea
h, and 
hoose the best instan
e.For our sele
ted 39-5-4 model, no instan
e ofthis ar
hite
ture ex
eeded 6.0 se
onds of train-ing. Using 
riteria similar to that used forinitial ar
hite
ture sele
tion, the instan
e withthe best testing a

ura
y and the fewest poten-tial rules was 
hosen for a
tual rule extra
tion:296/300 (99%) training a

ura
y, 70/76 (92%)testing a

ura
y, and 128 (2*4*2*2*4 
lusters)estimated maximum rules.4 Rule GenerationThe rule extra
tion te
hnique applied for thisresear
h is a traditional de
ompositional ap-proa
h, peering ba
k through the trained net-work with an emphasis on the values dynami-
ally generated by the hidden nodes. For ea
hhidden node, all values are automati
ally 
lus-tered, and a representative (mean) value is as-signed to ea
h 
luster. All 
ombinations ofthese mean values are evaluated against theoutput node weights to determine the 
om-binations (�
andidate expressions�) produ
ingthe desired outputs. The sets of 
andidateexpressions are simpli�ed and re-expressed assimple rules in terms of the original networkinputs. The rule extra
tion algorithm wasrewritten from s
rat
h for this 
urrent resear
hphase, but is based on the original extra
tionalgorithm originally des
ribed in S
hmidt, andS
hmidt and Chen [8, 14℄.For the Divisia dataset, the In�ation out-put is binned into four ranges, with ea
h range



representing the per
entage of in
rease in in�a-tion 
ompared to the 
orresponding quarter ofthe previous year. Referring to Table 1, theseranges are:
• Node 1: (-0.0033 ... 0.0124)(treated as −∞ ... 0.0124)
• Node 2: (0.0124 ... 0.0558)
• Node 3: (0.0558 ... 0.1116)
• Node 4: (0.1116 ... 0.1486)(treated as 0.1116 ... ∞)The rule generator produ
es rules des
ribingea
h range separately, so ea
h rule �le 
orre-sponds to a spe
i�
 output node, representinga spe
i�
 range of output values. (The 
urrentgeneration algorithm generously allows bound-ary 
onditions between two nodes to be rep-resented in both rulesets.) These rules are ex-pressed in terms of the original input values forreadability.Ea
h �le 
ontains many rules, numbered forreferen
e by human readers for 
onvenien
e.If some 
ombinations of attribute values (n
,nibd, et
.) is des
ribed by any rule in a spe-
i�
 �le, those values would be expe
ted to re-sult in the "in�ation in
rease %" representedby that node. I.e., all rules in the �node 3� out-put �le des
ribe 
onditions produ
ing in�ationin
reases in the range (0.0558 ... 0.1116) %.Ea
h line in a rule is formatted: (low_value<= attr & attr <= high_value) whi
h is,of 
ourse, the mathemati
al equivalent to:low_value <= attr <= high_value. The sym-bols �&� and �|� are logi
al �AND� and �OR�operations, respe
tively, and Inf represents in-�nity. The logi
 of the rule must evaluate to�TRUE� for the rule to be true. If a rule doesnot in
lude an attribute, then that attribute isnot required for the given rule.Figure 2 shows an example of a rule ex-tra
ted from our trained network. The example
learly demonstrates the human-readable for-mat and nature of extra
ted rules. This makesthem ideal for validation by subje
t-matter ex-perts. Perhaps more importantly, these rules
an also be exe
uted as 
ode and applied tonew data.Table 3 summarizes the key 
hara
teristi
s ofthe extra
ted rules. Noti
e the a
tual numberof rules is di�erent than the estimated maxi-mum number of extra
ted rules. The maximum

Table 3: Neural Model vs. Extra
ted RulesNeural Extra
tedModel Rule Set# Rules Estimated A
tual128 714Test Dataset 70/76 70/76A

ura
y (92%) (92%)number of rules is estimated as a fun
tion of thenumber of training data ve
tors and their val-ues, but the a
tual rules are generated basedon all possible 
ombinations of input values.(For this en
oding of the Divisia dataset, therewere 75 training ve
tors, but the dis
retizationof inputs allows for 19208 distin
t input ve
-tors, resulting in a higher number of rules thanestimated.) Also, the extra
tion algorithm re-laxes some of the 
onstraints of the originalnetwork, allowing some data to potentially fallinto a di�erent 
lassi�
ation than sele
ted bythe 
orresponding neural model. This 
an re-sult in slightly di�erent a

ura
y spe
i�
ationsfor the rule set versus the neural network, butthe results are generally very 
omparable. Forthis en
oding of the Divisia dataset, 
oupledwith this spe
i�
 neural network instan
e andrule extra
tion algorithm, the rules report es-sentially the same results as the trained neuralnetwork (with 98.47% a

ura
y).The automated rule extra
tor found 96, 256,282, and 80 rules for output nodes 1, 2, 3, and 4,respe
tively, for a total of 714 rules, as reportedin the table.5 InterpretationThe rules from all four generated �les were ex-amined by one of the authors, a subje
t-matterexpert in e
onometri
s. Despite being exe-
utable as 
ode, the rules were found to be de-s
riptive and easy to read. Interesting patternswere found merely by examining the rule 
on-tent, and an initial analysis of these patterns ispresented here.The general trend is for interest bearing de-posits to have a higher impa
t on in�ation thanthe non-interest bearing ones. Hen
e interestbearing deposits and building so
iety depositsare generally found to have a higher �relation-ship� / impa
t upon in�ation than non-interest



if ( (-Inf <= n
 & n
 <= -0.024308) ...& ( (-0.045096 <= nibd & nibd <= -0.010042) ...| (0.016850 <= nibd & nibd <= 0.034526)) ...& (-Inf <= ibsd & ibsd <= 0.148376) ...& (0.132629 <= ibtd & ibtd <= 0.327074) ...& ( (-Inf <= bsd & bsd <= 0.062672) ...| (0.111375 <= bsd & bsd <= 0.148103)) ...) return true; Figure 2: Sample Generated Rulebearing deposits and notes and 
oins. Put moresimply, higher yielding assets are found to havea greater impa
t on in�ation than lower yield-ing assets. This �nding may have more to dowith the volume of the asset than its user 
ost,where user 
ost is 
al
ulated as:
Πit = P

∗

t

Rt − rit

1 + Rt

(1)where P* is true 
ost of living index, approxi-mated by a 
onsumer pri
e index. R is the rateof return of return on asset that yields no mon-etary servi
es. r is the own-rate of individualmonetary asset.See Barnett [15℄ and Elger and Binner [5℄for a more detailed des
ription of user 
osts ofmonetary assets.The generated rules look appealing from ane
onometri
ian's point of view; there is a de-gree of stability about the results a
hieved overthe 
ases examined. These rules have poten-tial for shedding new light on movements ofin�ation, given any spe
i�
 monetary poli
yregime in operation at any time. Further ex-perimentation is ne
essary to determine howthe rules 
orrespond with weights derived fromuser 
osts. This work would be of tremendousinterest for proponents of Divisia money andmerits further investigation in future resear
h.6 Con
lusionThe goal in this paper was to 
hoose a 
andi-date ar
hite
ture and examine the rules gener-ated for the sele
ted instan
e. The maximumrule quantity estimate used as a part of thear
hite
ture sele
tion pro
ess provided usefulinput, but may not have been an a

urate por-trayal of a
tual rules, sin
e many rule instan
esmay be simpli�ed after raw extra
tion. In ad-dition, some rule sets may prove to be more

a

urate than others, even when the number ofrules is similar. A more 
omprehensive inves-tigation would in
lude generating rules for all
andidates, 
omparing only the rule a

ura
y.Sin
e rule extra
tion is still a 
omputationally(and temporally) expensive pro
ess, this inves-tigation must be postponed to a later date.The sele
ted ar
hite
ture was su

essfullymined for interesting and des
riptive rules us-ing a newly 
oded de
ompositional approa
hthat is mu
h less 
omputationally taxing thanthe AFFNN-based algorithm the authors previ-ously used. On
e again, the rules were en
odedto be exe
utable 
ode, 
apable of pro
essingraw data independently of the original trainedneural network. Results demonstrate that theresulting rules are faithful to the original net-work to a high degree of a

ura
y.Although it is bene�
ial to have exe
utablerules, the prin
iple goal is to use the 
onne
-tionist model to identify relationships, then ex-press the learned fun
tions in a form useful tosubje
t-matter experts (in the 
ase of Divisiadata, e
onometri
ians). Based on expert anal-ysis, the generated rules are 
learly valuable fordes
ribing nuan
es of the Divisia/In�ation re-lationship. These early results en
ourage 
on-tinued resear
h in this area.Of 
ourse, the ultimate obje
tive is to usethis te
hnique as a e
onomi
 tool for predi
-tion and 
ontrol of in�ation, leading to greatere
onomi
 stability. Calibration of these resultsin a large s
ale ma
ro model would be an in-teresting route to pursue to determine the fullextent of the impa
t and impli
ations of theserules for the U.K. e
onomy.We have always intended to 
ompare the re-sults of this resear
h to 
ontemporary meth-ods on
e the proof-of-
on
ept has been demon-strated. We hope that this phase of the studywill �nally allow us to formulate a good ap-



proa
h for su
h a 
omparison. Sin
e manyother te
hniques produ
e equation 
oe�
ientsinstead of spe
i�
 rules, we are 
hallenged todesign an appropriate experiment to ensure the
omparison is legitimate, fair, and 
on
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