
Analyzing Divisia RulesExtrated from a Feedforward Neural NetworkVinent A. ShmidtAir Fore Researh LaboratoryDayton, Ohio USA Jane M. BinnerAston UniversityBirmingham, UKAbstratThis paper introdues a mehanism for gen-erating a series of rules that haraterizethe money�prie relationship, de�ned as therelationship between the rate of growth ofthe money supply and in�ation. Divisiaomponent data is used to train a seletion ofandidate feedforward neural networks. Theseleted network is mined for rules, expressedin human-readable and mahine-exeutableform. The rule and network auray areompared, and expert ommentary is made onthe readability and reliability of the extratedrule set. The ultimate goal of this researhis to produe rules that meaningfully andaurately desribe in�ation in terms of theDivisia omponent dataset.Keywords: Divisia, In�ation, Neural Net-work, Data Mining, Rule Generation1 IntrodutionGovernment poliy-makers aim to provide astable maroeonomi environment to supporteonomi growth and rising living standards,and the maintenane of a low rate of in�ation isruial for stability. The monetary authoritiestherefore seek to identify indiators of maroe-onomi onditions whih will signal impend-ing in�ation su�iently early to allow the ne-essary ation to be taken. Eonomi theoristshave traditionally held the view that a long-run relationship exists between the quantity ofmoney and the general level of pries. Con�-dene in this relationship, expressed in terms oflong-run rates of money growth and in�ation,along with an aumulation of evidene sup-

porting a seemingly stable linear demand forbroad money aggregates, led the major entralbanks of the world to aept monetary target-ing as the means of ontrolling in�ation. A spe-i� measure of the rate of growth of moneystok, known as a monetary aggregate, is de-rived from the various onstituent liquid lia-bilities of ommerial and savings banks. Formonetarists the ultimate poliy goal of low in-�ation is ahieved by keeping the growth of thehosen aggregate within a target range.Clearly, the foundations of the onstrutionof monetary aggregates are well rooted in mon-etary aggregation theory and require extremelystrong assumptions. (Barnett and Serletis givea detailed treatment of the theory of mone-tary aggregation [1℄.) However, the underly-ing philosophy of the urrent researh is thatall assumptions an be weakened and the Di-visia formulation an still be improved. Reentresearh has foused on aounting for the risk-iness of the asset in the index onstrution; seeBarnett et al [2, 3℄ for suh e�orts in the USAand Drake et al [4℄ and Binner and Elger [5℄ forapproahes in the UK.Many tools have been applied to searh forrelationships between monetary aggregates andin�ation. One suh tool is the neural network,a trainable mathematial model that tends tobe robust with respet to noise and an gener-alize well under many irumstanes. Gazelyand Binner suessfully used feedforward neu-ral networks to investigate the relationshipsbetween UK Divisia M4 assets and in�ation,demonstrating that reasonably simple onne-tionist arhitetures are expressive enough toprove the existene of suh relationships [6℄.Their model was designed to examine sensitiv-ity of the relationships, whih were spei�ed asweights within the trained network. Additional



e�ort would be needed to extrat and expressthese relationships.Our own ollaborative researh started in2002. We trained an Aggregate FeedforwardNeural Network (AFFNN) using Divisia om-ponents and orresponding in�ation values inorder to evaluate the feasibility of analyzing Di-visia data with this model [7℄. The AFFNNis a general-purpose feedforward onnetion-ist arhiteture designed to disover the rela-tionships amongst all network input simultane-ously and non-autoassoiatively [8℄. A deom-positional rule extration algorithm inspired byother researhers [9,10℄ was designed to operatespei�ally on the AFFNN. This algorithm pro-dued a olletion of Matlab-based human-readable and mahine-exeutable if-then rulesexpressing the disovered relationships in termsof the original data [11℄.The AFFNN was initially hosen for thiswork beause of its existing rule extration al-gorithm. Ongoing researh resulted in an ex-panded study of rule generation based on theAFFNN [12℄, moving past the initial proof-of-onept paper from 2003. The 2004 work re-vealed potential issues in omputational om-plexity, and a short investigation of these is-sues was published in 2005 [13℄. One goal ofthe urrent researh e�ort is to onentrate onthe quantity and quality of the rules desribingDivisia relationships. Sine the full potential ofthe AFFNN is not neessary for this dataset,omplexity an be redued by retraining theDivisia data using simpler feedforward models,and reimplementing the rule extration proessfor these models.The following setions of this paper desribethe seletion of an appropriate feedforwardmodel. This inludes a desription of the en-oding used for the monetary omponent assetdata of the UK Divisia M4 and orrespondingin�ation values. Most importantly, this paperinludes a disussion of the deompositionalrule extration algorithm and a limited eval-uation of the rules extrated from the seletedonnetionist model.

2 Dataset PreparationHistorial UK Divisia M4 and orrespondingin�ation data was obtained1 in order to in-vestigate the relationship between money sup-ply and in�ation. The training data used foronnetionist model seletion inluded quar-terly seasonally adjusted values from Q1 1977through Q1 2001, a total of 97 exemplars. In�a-tion was onstruted for eah quarter as year-on-year growth rates of pries. Quarterly dataover the sample period 1977Q1 to 2001Q1 wasused as illustrated in Figure 1. Our preferredprie series, the Consumer Prie Index (CPI),was obtained from DataStream.The data was prepared using a series of steps.First, for eah ategory of data, the dataset wasrealulated to ompute the perentage of in-rease in value for orresponding quarters inonseutive years. This redued the datasetto 94 exemplars. Then, an automated lus-tering algorithm was employed to bin similar(reomputed) values within eah ategory ofdata together. The number of bins was alsodetermined automatially by the algorithm, de-veloped in Shmidt [8℄. Finally, the bins wereused to reode the dataset using a thermome-ter enoding sheme, a ommon approah fordisretizing ontinuous data for neural networkonsumption.Similar data preparation was performed forthe in�ation values, exept the �nal reodingused a 1-of-N sheme instead of thermome-ter enoding. This was done beause our re-ent omplexity redution studies suggestedthat 1-of-N enoding yields fewer rules thanthermometer-enoded in�ation values.Table 1 summarizes these results. The nameof eah ategory is identi�ed, followed by thesymbol used to represent the attribute in thegenerated rule. The �nal two olumns are thenumber of lusters and the atual luster rangesgiven in (min,max) format. The �rst �ve at-tributes omprise the 39-element binary-valuedinput vetors, and in�ation beomes the four-element binary-valued output. Note that thesebinary-valued vetors are only used for trainingand testing the neural models. The �nal rulesextrated from the network will be expressed in1Component data is available on the Internet athttp://www.bankofengland.o.uk/mfsd/index.htm(Bank of England Statistial Abstrats, Part 2, SetionA, tables 12.1 and 12.2).



Table 1: Divisia M4 EnodingCategory (Attribute) Symbol Levels Cluster RangesNotes and Coins NC 7 -0.0333 -0.0243 0.0225 0.0642 0.1604 0.1748-0.0243 -0.0048 0.0642 0.1175-0.0048 0.0225 0.1175 0.1604Non-Interest Bearing Bank Deposits NIBD 14 -0.1273 -0.0918 0.0022 0.0169 0.0826 0.1104-0.0918 -0.0451 0.0169 0.0345 0.1104 0.1543-0.0451 -0.0221 0.0345 0.0497 0.1543 0.1843-0.0221 -0.0100 0.0497 0.0664 0.1843 0.1923-0.0100 0.0022 0.0664 0.0826Interest Bearing Bank Sight Deposits IBSD 4 0.0654 0.1484 0.3069 0.48430.1484 0.3069 0.4843 0.6542Interest Bearing Bank Time Deposits IBTD 7 -0.0929 -0.0480 0.0574 0.1326 0.3271 0.3573-0.0480 0.0085 0.1326 0.24370.0085 0.0574 0.2437 0.3271Building Soiety Deposits BSD 7 0.0062 0.0370 0.0820 0.1114 0.1792 0.19270.0370 0.0627 0.1114 0.14810.0627 0.0820 0.1481 0.1792In�ation INFL 4 -0.0033 0.0124 0.0558 0.11160.0124 0.0558 0.1116 0.1486terms of the ontinuous attribute values (per-entage inrease).3 Neural Network SeletionOur previous researh has always been basedon the Aggregate Feedforward Neural Network(AFFNN) model, primarily due to the avail-ability of an existing rule extration apabil-ity. While this model has been su�ient, therules were numerous and omplex. We believethat ontinuing the researh based on a simpler(and typial) feedforward model will dereasethe number and omplexity of the generatedrules.We generated a reasonable seletion of simi-lar feedforward onnetionist arhitetures asa basis for network seletion. Eah andi-date arhiteture had the same number of in-puts, the same outputs, and ontained a sin-gle hidden layer. All nodes in the hiddenlayer used a traditional sigmoid ativation fun-tion (Matlab's logsig funtion) and the unon-strained linear funtion (Matlab's purelin) inthe nodes at the output layer.The training data onsisted of a randomly se-leted set of 75 exemplars (80%), and the test-ing set ontained the remaining 19 exemplars(20%). This breakout was hosen to orrespond

to the original e�orts of Gazely and Binner [6℄.The idential data was used for all instanesof all networks. For eah arhiteture shownin Table 2, 25 networks with randomly gen-erated initial onditions were trained for 2500epohs. (Earlier experiments showed no sub-stantial auray improvement when trainedpast 2500 epohs.) The best network of eahlass is shown in the table (based on the a-uray of the testing data)2. No instane ofmodel training exeeded 9.25 seonds.The table's Arhiteture olumn expresseseah network arhiteture in (# inputs�# hid-den nodes�# outputs) form. The Training(Testing) olumn show the number and per-entage of orret training (testing) points forall training (testing) data. Sine there are four(4) binary-valued outputs in eah output ve-tor, we ount eah output as a separate datapoint: 75 training ases times 4 outputs perase yields a potential of 300 data points. (Fortesting, 19 ases times 4 outputs eah yields 76data points.)The table's rule generation olumn reportsthe estimated maximum number of rules thatould be generated using the deompositional2All model exeution was performed on a Slak-ware 10.1 Linux-based (ustom SMP 2.6.13 kernel) dualAMD Opteron 244 system with 2Gb RAM runningMatlab 5.3 (R11).



Table 2: Arhiteture Comparison (best of 25)Feedforward # Bins Per EstimatedArhiteture Training Testing Hidden Node Maximum # Rules39-4-4 286/300 (95%) 64/76 (84%) 5 4 2 6 24039-5-4 298/300 (99%) 67/76 (88%) 5 4 5 2 3 60039-6-4 300/300 (100%) 64/76 (84%) 8 2 12 2 12 9 4147239-7-4 300/300 (100%) 64/76 (84%) 2 11 13 2 2 9 1 1029639-8-4 300/300 (100%) 66/76 (86%) 17 4 9 5 7 11 7 2 329868039-9-4 300/300 (100%) 66/76 (86%) 4 7 2 10 12 3 2 11 7 310464039-10-4 300/300 (100%) 64/76 (84%) 5 7 2 6 8 8 9 3 13 8 7547904039-12-4 300/300 (100%) 70/76 (92%) 1 13 15 2 15 12 13 15 10 15 2 2 8.2134e+0939-16-4 300/300 (100%) 64/76 (84%) 4 5 8 5 2 13 5 10 10 15 8 14 12 6 9 12 1.3586e+14
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Figure 1: Arhiteture Seletionextration algorithm implemented for this sys-tem. This number is based on the number oflusters of values produed by the hidden layernodes (shown in the table as �# Bins Per Hid-den Node�), and is similar to the approah de-sribed in our previous work and very brie�yreviewed in the next setion. The values inthese olumns are displayed as an aid to net-work seletion.We deided to selet the network ontaining5 nodes in the hidden layer based on a om-bination of the testing auray and the maxi-mum number of generated rules. This networkon�guration generates a reasonable number ofrules and has a very good training and testingauray. Without implying any diret rela-tionship, the Table shows the testing aurayand maximum number of rules for the best net-work of eah on�guration. The seleted arhi-teture is also shown in Figure 1 for referene.

One a andidate arhiteture has been se-leted, we re-randomize the training and test-ing datasets, re-exeute the seleted model ar-hiteture 1000 times, with 2500 epohs oftraining eah, and hoose the best instane.For our seleted 39-5-4 model, no instane ofthis arhiteture exeeded 6.0 seonds of train-ing. Using riteria similar to that used forinitial arhiteture seletion, the instane withthe best testing auray and the fewest poten-tial rules was hosen for atual rule extration:296/300 (99%) training auray, 70/76 (92%)testing auray, and 128 (2*4*2*2*4 lusters)estimated maximum rules.4 Rule GenerationThe rule extration tehnique applied for thisresearh is a traditional deompositional ap-proah, peering bak through the trained net-work with an emphasis on the values dynami-ally generated by the hidden nodes. For eahhidden node, all values are automatially lus-tered, and a representative (mean) value is as-signed to eah luster. All ombinations ofthese mean values are evaluated against theoutput node weights to determine the om-binations (�andidate expressions�) produingthe desired outputs. The sets of andidateexpressions are simpli�ed and re-expressed assimple rules in terms of the original networkinputs. The rule extration algorithm wasrewritten from srath for this urrent researhphase, but is based on the original extrationalgorithm originally desribed in Shmidt, andShmidt and Chen [8, 14℄.For the Divisia dataset, the In�ation out-put is binned into four ranges, with eah range



representing the perentage of inrease in in�a-tion ompared to the orresponding quarter ofthe previous year. Referring to Table 1, theseranges are:
• Node 1: (-0.0033 ... 0.0124)(treated as −∞ ... 0.0124)
• Node 2: (0.0124 ... 0.0558)
• Node 3: (0.0558 ... 0.1116)
• Node 4: (0.1116 ... 0.1486)(treated as 0.1116 ... ∞)The rule generator produes rules desribingeah range separately, so eah rule �le orre-sponds to a spei� output node, representinga spei� range of output values. (The urrentgeneration algorithm generously allows bound-ary onditions between two nodes to be rep-resented in both rulesets.) These rules are ex-pressed in terms of the original input values forreadability.Eah �le ontains many rules, numbered forreferene by human readers for onveniene.If some ombinations of attribute values (n,nibd, et.) is desribed by any rule in a spe-i� �le, those values would be expeted to re-sult in the "in�ation inrease %" representedby that node. I.e., all rules in the �node 3� out-put �le desribe onditions produing in�ationinreases in the range (0.0558 ... 0.1116) %.Eah line in a rule is formatted: (low_value<= attr & attr <= high_value) whih is,of ourse, the mathematial equivalent to:low_value <= attr <= high_value. The sym-bols �&� and �|� are logial �AND� and �OR�operations, respetively, and Inf represents in-�nity. The logi of the rule must evaluate to�TRUE� for the rule to be true. If a rule doesnot inlude an attribute, then that attribute isnot required for the given rule.Figure 2 shows an example of a rule ex-trated from our trained network. The examplelearly demonstrates the human-readable for-mat and nature of extrated rules. This makesthem ideal for validation by subjet-matter ex-perts. Perhaps more importantly, these rulesan also be exeuted as ode and applied tonew data.Table 3 summarizes the key harateristis ofthe extrated rules. Notie the atual numberof rules is di�erent than the estimated maxi-mum number of extrated rules. The maximum

Table 3: Neural Model vs. Extrated RulesNeural ExtratedModel Rule Set# Rules Estimated Atual128 714Test Dataset 70/76 70/76Auray (92%) (92%)number of rules is estimated as a funtion of thenumber of training data vetors and their val-ues, but the atual rules are generated basedon all possible ombinations of input values.(For this enoding of the Divisia dataset, therewere 75 training vetors, but the disretizationof inputs allows for 19208 distint input ve-tors, resulting in a higher number of rules thanestimated.) Also, the extration algorithm re-laxes some of the onstraints of the originalnetwork, allowing some data to potentially fallinto a di�erent lassi�ation than seleted bythe orresponding neural model. This an re-sult in slightly di�erent auray spei�ationsfor the rule set versus the neural network, butthe results are generally very omparable. Forthis enoding of the Divisia dataset, oupledwith this spei� neural network instane andrule extration algorithm, the rules report es-sentially the same results as the trained neuralnetwork (with 98.47% auray).The automated rule extrator found 96, 256,282, and 80 rules for output nodes 1, 2, 3, and 4,respetively, for a total of 714 rules, as reportedin the table.5 InterpretationThe rules from all four generated �les were ex-amined by one of the authors, a subjet-matterexpert in eonometris. Despite being exe-utable as ode, the rules were found to be de-sriptive and easy to read. Interesting patternswere found merely by examining the rule on-tent, and an initial analysis of these patterns ispresented here.The general trend is for interest bearing de-posits to have a higher impat on in�ation thanthe non-interest bearing ones. Hene interestbearing deposits and building soiety depositsare generally found to have a higher �relation-ship� / impat upon in�ation than non-interest



if ( (-Inf <= n & n <= -0.024308) ...& ( (-0.045096 <= nibd & nibd <= -0.010042) ...| (0.016850 <= nibd & nibd <= 0.034526)) ...& (-Inf <= ibsd & ibsd <= 0.148376) ...& (0.132629 <= ibtd & ibtd <= 0.327074) ...& ( (-Inf <= bsd & bsd <= 0.062672) ...| (0.111375 <= bsd & bsd <= 0.148103)) ...) return true; Figure 2: Sample Generated Rulebearing deposits and notes and oins. Put moresimply, higher yielding assets are found to havea greater impat on in�ation than lower yield-ing assets. This �nding may have more to dowith the volume of the asset than its user ost,where user ost is alulated as:
Πit = P

∗

t
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(1)where P* is true ost of living index, approxi-mated by a onsumer prie index. R is the rateof return of return on asset that yields no mon-etary servies. r is the own-rate of individualmonetary asset.See Barnett [15℄ and Elger and Binner [5℄for a more detailed desription of user osts ofmonetary assets.The generated rules look appealing from aneonometriian's point of view; there is a de-gree of stability about the results ahieved overthe ases examined. These rules have poten-tial for shedding new light on movements ofin�ation, given any spei� monetary poliyregime in operation at any time. Further ex-perimentation is neessary to determine howthe rules orrespond with weights derived fromuser osts. This work would be of tremendousinterest for proponents of Divisia money andmerits further investigation in future researh.6 ConlusionThe goal in this paper was to hoose a andi-date arhiteture and examine the rules gener-ated for the seleted instane. The maximumrule quantity estimate used as a part of thearhiteture seletion proess provided usefulinput, but may not have been an aurate por-trayal of atual rules, sine many rule instanesmay be simpli�ed after raw extration. In ad-dition, some rule sets may prove to be more

aurate than others, even when the number ofrules is similar. A more omprehensive inves-tigation would inlude generating rules for allandidates, omparing only the rule auray.Sine rule extration is still a omputationally(and temporally) expensive proess, this inves-tigation must be postponed to a later date.The seleted arhiteture was suessfullymined for interesting and desriptive rules us-ing a newly oded deompositional approahthat is muh less omputationally taxing thanthe AFFNN-based algorithm the authors previ-ously used. One again, the rules were enodedto be exeutable ode, apable of proessingraw data independently of the original trainedneural network. Results demonstrate that theresulting rules are faithful to the original net-work to a high degree of auray.Although it is bene�ial to have exeutablerules, the priniple goal is to use the onne-tionist model to identify relationships, then ex-press the learned funtions in a form useful tosubjet-matter experts (in the ase of Divisiadata, eonometriians). Based on expert anal-ysis, the generated rules are learly valuable fordesribing nuanes of the Divisia/In�ation re-lationship. These early results enourage on-tinued researh in this area.Of ourse, the ultimate objetive is to usethis tehnique as a eonomi tool for predi-tion and ontrol of in�ation, leading to greatereonomi stability. Calibration of these resultsin a large sale maro model would be an in-teresting route to pursue to determine the fullextent of the impat and impliations of theserules for the U.K. eonomy.We have always intended to ompare the re-sults of this researh to ontemporary meth-ods one the proof-of-onept has been demon-strated. We hope that this phase of the studywill �nally allow us to formulate a good ap-



proah for suh a omparison. Sine manyother tehniques produe equation oe�ientsinstead of spei� rules, we are hallenged todesign an appropriate experiment to ensure theomparison is legitimate, fair, and onlusive.Referenes[1℄ William A. Barnett and Apostolos Ser-letis, editors. The Theory of MonetaryAggregation. North-Holland, Amsterdam,2000.[2℄ William A. Barnett. Exat aggregationunder risk. In William A. Barnett, Mau-rie Salles, Herve' Moulin, and NormanSho�eld, editors, Soial Choie, Welfareand Ethis, pages 353�374, Cambridge,1995. Proeedings of the Eighth Interna-tional Symposium in Eonomi Theoryand Eonometris, Cambridge UniversityPress. Reprinted in Barnett, W.A. andSerletis, A. (Eds.) (2000), The Theoryof Monetary Aggregation, North-Holland,Amsterdam, Chapter 10, pp. 195�216.[3℄ William A. Barnett, Yi Liu, and MarkJensen. The CAPM risk adjustmentfor exat aggregation over �nanial as-sets. Maroeonomi Dynamis, 1:485�512, 1997. Reprinted in Barnett, WA.and Serletis, A. (Eds.) (2000), The Theoryof Monetary Aggregation, North-Holland,Amsterdam, Chapter 12, pp. 245�73.[4℄ Leigh M. Drake, Adrian Fleissig, andAndy W. Mullineux. Are 'risky' assetssubstitutes for 'monetary' assets? evi-dene from an aim demand system. Eo-nomi Inquiry, 37:510�526, 1999.[5℄ Jane M. Binner and Thomas Elger.The UK household setor demand forrisky money. Berkeley Eletroni Press,Topis in Maroeonomis Series, 2004.http://www.bepress.om/bejm/topis/vol4/iss1/art3.[6℄ Aliia M. Gazely and Jane M. Binner. Op-timal weights for Divisia aggregation us-ing a neural network approah. In 5th Bi-ennial Conferene on Alternative Perspe-tives on Finane, Dundee, 2000.
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