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Abstract

This paper introduces a mechanism for gen-
erating a series of rules that characterize
the money—price relationship, defined as the
relationship between the rate of growth of
the money supply and inflation.
component data is used to train a selection of
candidate feedforward neural networks. The
selected network is mined for rules, expressed
in  human-readable and machine-executable
form.  The rule and network accuracy are
compared, and expert commentary is made on
the readability and reliability of the extracted
rule set. The ultimate goal of this research
1s to produce rules that meaningfully and
accurately describe inflation in terms of the
Divisia component dataset.
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1 Introduction

Government policy-makers aim to provide a
stable macroeconomic environment to support
economic growth and rising living standards,
and the maintenance of a low rate of inflation is
crucial for stability. The monetary authorities
therefore seek to identify indicators of macroe-
conomic conditions which will signal impend-
ing inflation sufficiently early to allow the nec-
essary action to be taken. Economic theorists
have traditionally held the view that a long-
run relationship exists between the quantity of
money and the general level of prices. Confi-
dence in this relationship, expressed in terms of
long-run rates of money growth and inflation,
along with an accumulation of evidence sup-
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porting a seemingly stable linear demand for
broad money aggregates, led the major central
banks of the world to accept monetary target-
ing as the means of controlling inflation. A spe-
cific measure of the rate of growth of money
stock, known as a monetary aggregate, is de-
rived from the various constituent liquid lia-
bilities of commercial and savings banks. For
monetarists the ultimate policy goal of low in-
flation is achieved by keeping the growth of the
chosen aggregate within a target range.

Clearly, the foundations of the construction
of monetary aggregates are well rooted in mon-
etary aggregation theory and require extremely
strong assumptions. (Barnett and Serletis give
a detailed treatment of the theory of mone-
tary aggregation [1].) However, the underly-
ing philosophy of the current research is that
all assumptions can be weakened and the Di-
visia formulation can still be improved. Recent
research has focused on accounting for the risk-
iness of the asset in the index construction; see
Barnett et al |2,3] for such efforts in the USA
and Drake et al [4] and Binner and Elger [5] for
approaches in the UK.

Many tools have been applied to search for
relationships between monetary aggregates and
inflation. One such tool is the neural network,
a trainable mathematical model that tends to
be robust with respect to noise and can gener-
alize well under many circumstances. Gazely
and Binner successfully used feedforward neu-
ral networks to investigate the relationships
between UK Divisia M4 assets and inflation,
demonstrating that reasonably simple connec-
tionist architectures are expressive enough to
prove the existence of such relationships |[6].
Their model was designed to examine sensitiv-
ity of the relationships, which were specified as
weights within the trained network. Additional



effort would be needed to extract and express
these relationships.

Our own collaborative research started in
2002. We trained an Aggregate Feedforward
Neural Network (AFFNN) using Divisia com-
ponents and corresponding inflation values in
order to evaluate the feasibility of analyzing Di-
visia data with this model [7]. The AFFNN
is a general-purpose feedforward connection-
ist architecture designed to discover the rela-
tionships amongst all network input simultane-
ously and non-autoassociatively [8]. A decom-
positional rule extraction algorithm inspired by
other researchers |9,10] was designed to operate
specifically on the AFFNN. This algorithm pro-
duced a collection of MATLAB-based human-
readable and machine-executable if-then rules
expressing the discovered relationships in terms
of the original data [11].

The AFFNN was initially chosen for this
work because of its existing rule extraction al-
gorithm. Ongoing research resulted in an ex-
panded study of rule generation based on the
AFFNN [12|, moving past the initial proof-of-
concept paper from 2003. The 2004 work re-
vealed potential issues in computational com-
plexity, and a short investigation of these is-
sues was published in 2005 [13]. One goal of
the current research effort is to concentrate on
the quantity and quality of the rules describing
Divisia relationships. Since the full potential of
the AFFNN is not necessary for this dataset,
complexity can be reduced by retraining the
Divisia data using simpler feedforward models,
and reimplementing the rule extraction process
for these models.

The following sections of this paper describe
the selection of an appropriate feedforward
model. This includes a description of the en-
coding used for the monetary component asset
data of the UK Divisia M4 and corresponding
inflation values. Most importantly, this paper
includes a discussion of the decompositional
rule extraction algorithm and a limited eval-
uation of the rules extracted from the selected
connectionist model.

2 Dataset Preparation

Historical UK Divisia M4 and corresponding
inflation data was obtained! in order to in-
vestigate the relationship between money sup-
ply and inflation. The training data used for
connectionist model selection included quar-
terly seasonally adjusted values from Q1 1977
through Q1 2001, a total of 97 exemplars. Infla-
tion was constructed for each quarter as year-
on-year growth rates of prices. Quarterly data
over the sample period 1977Q1 to 2001Q1 was
used as illustrated in Figure 1. Our preferred
price series, the Consumer Price Index (CPI),
was obtained from DataStream.

The data was prepared using a series of steps.
First, for each category of data, the dataset was
recalculated to compute the percentage of in-
crease in value for corresponding quarters in
consecutive years. This reduced the dataset
to 94 exemplars. Then, an automated clus-
tering algorithm was employed to bin similar
(recomputed) values within each category of
data together. The number of bins was also
determined automatically by the algorithm, de-
veloped in Schmidt [8]. Finally, the bins were
used to recode the dataset using a thermome-
ter encoding scheme, a common approach for
discretizing continuous data for neural network
consumption.

Similar data preparation was performed for
the inflation values, except the final recoding
used a 1-of-N scheme instead of thermome-
ter encoding. This was done because our re-
cent complexity reduction studies suggested
that 1-of-N encoding yields fewer rules than
thermometer-encoded inflation values.

Table 1 summarizes these results. The name
of each category is identified, followed by the
symbol used to represent the attribute in the
generated rule. The final two columns are the
number of clusters and the actual cluster ranges
given in (min,max) format. The first five at-
tributes comprise the 39-element binary-valued
input vectors, and inflation becomes the four-
element binary-valued output. Note that these
binary-valued vectors are only used for training
and testing the neural models. The final rules
extracted from the network will be expressed in

!'Component data is available on the Internet at
http://www.bankofengland.co.uk/mfsd/index.htm
(Bank of England Statistical Abstracts, Part 2, Section
A tables 12.1 and 12.2).



Table 1: Divisia M4 Encoding

‘ Category (Attribute)

‘ Symbol ‘ Levels ‘

Cluster Ranges

-0.0333 -0.0243 | 0.0225 0.0642 | 0.1604 0.1748
Notes and Coins NC 7 -0.0243 -0.0048 | 0.0642 0.1175
-0.0048 0.0225 | 0.1175 0.1604
-0.1273 -0.0918 | 0.0022 0.0169 | 0.0826 0.1104
-0.0918 -0.0451 | 0.0169 0.0345 | 0.1104 0.1543
Non-Interest Bearing Bank Deposits | NIBD 14 -0.0451 -0.0221 | 0.0345 0.0497 | 0.1543 0.1843
-0.0221 -0.0100 | 0.0497 0.0664 | 0.1843 0.1923
-0.0100 0.0022 | 0.0664 0.0826
Interest Bearing Bank Sight Deposits IBSD 4 00651 0.1484 | 0.3069 0.4845
0.1484 0.3069 | 0.4843 0.6542
-0.0929 -0.0480 | 0.0574 0.1326 | 0.3271 0.3573
Interest Bearing Bank Time Deposits | IBTD 7 -0.0480 0.0085 | 0.1326 0.2437
0.0085 0.0574 | 0.2437 0.3271
0.0062 0.0370 | 0.0820 0.1114 | 0.1792 0.1927
Building Society Deposits BSD 7 0.0370 0.0627 | 0.1114 0.1481
0.0627 0.0820 | 0.1481 0.1792
Luflation INFL 4 -0.0033 0.0124 | 0.0558 0.1116
0.0124 0.0558 | 0.1116 0.1486

terms of the continuous attribute values (per-
centage increase).

3 Neural Network Selection

Our previous research has always been based
on the Aggregate Feedforward Neural Network
(AFFNN) model, primarily due to the avail-
ability of an existing rule extraction capabil-
ity. While this model has been sufficient, the
rules were numerous and complex. We believe
that continuing the research based on a simpler
(and typical) feedforward model will decrease
the number and complexity of the generated
rules.

We generated a reasonable selection of simi-
lar feedforward connectionist architectures as
a basis for network selection. Each candi-
date architecture had the same number of in-
puts, the same outputs, and contained a sin-
gle hidden layer. All nodes in the hidden
layer used a traditional sigmoid activation func-
tion (MATLAB’s logsig function) and the uncon-
strained linear function (MATLAB’s purelin) in
the nodes at the output layer.

The training data consisted of a randomly se-
lected set of 75 exemplars (80%), and the test-
ing set contained the remaining 19 exemplars
(20%). This breakout was chosen to correspond

to the original efforts of Gazely and Binner [6].
The identical data was used for all instances
of all networks.
in Table 2, 25 networks with randomly gen-
erated initial conditions were trained for 2500
epochs. (Earlier experiments showed no sub-
stantial accuracy improvement when trained
past 2500 epochs.) The best network of each
class is shown in the table (based on the ac-
curacy of the testing data)?. No instance of
model training exceeded 9.25 seconds.

The table’s Architecture column expresses
each network architecture in (# inputs—# hid-
den nodes # outputs) form. The Training
(Testing) column show the number and per-
centage of correct training (testing) points for
all training (testing) data. Since there are four
(4) binary-valued outputs in each output vec-
tor, we count each output as a separate data
point: 75 training cases times 4 outputs per
case yields a potential of 300 data points. (For
testing, 19 cases times 4 outputs each yields 76
data points.)

The table’s rule generation column reports

For each architecture shown

the estimated maximum number of rules that
could be generated using the decompositional

2All model execution was performed on a Slack-
ware 10.1 Linux-based (custom SMP 2.6.13 kernel) dual
AMD Opteron 244 system with 2Gb RAM running
MatLAB 5.3 (R11).



Table 2: Architecture Comparison (best of 25)

Al NC

A2 NIBD

A3 1BSD

A4 IBTD

A5 BSD

Input
Layer

Figure 1: Architecture Selection

extraction algorithm implemented for this sys-
tem. This number is based on the number of
clusters of values produced by the hidden layer
nodes (shown in the table as “# Bins Per Hid-
den Node”), and is similar to the approach de-
scribed in our previous work and very briefly
reviewed in the next section. The values in
these columns are displayed as an aid to net-
work selection.

We decided to select the network containing
5 nodes in the hidden layer based on a com-
bination of the testing accuracy and the maxi-
mum number of generated rules. This network
configuration generates a reasonable number of
rules and has a very good training and testing
accuracy. Without implying any direct rela-
tionship, the Table shows the testing accuracy
and maximum number of rules for the best net-
work of each configuration. The selected archi-
tecture is also shown in Figure 1 for reference.

Feedforward # Bins Per Estimated

Architecture Training Testing Hidden Node Maximum # Rules
39-4-4 286/300 (95%) | 64/76 (84%) 5426 240
39-5-4 298/300 (99%) | 67/76 (88%) 54523 600
39-6-4 300/300 (100%) | 64/76 (84%) 82122129 41472
39-7-4 300/300 (100%) | 64/76 (84%) 211132291 10296
39-8-4 300/300 (100%) | 66/76 (86%) 1749571172 3298680
39-9-4 300/300 (100%) | 66/76 (86%) 472101232117 3104640
39-10-4 300/300 (100%) | 64/76 (84%) 57268893138 75479040
39-12-4 300/300 (100%) | 70/76 (92%) 113152151213 1510 152 2 8.2134e+09
39-16-4 300/300 (100%) | 64/76 (84%) | 458521351010 158 14 12 6 9 12 1.3586e+14

© Once a candidate architecture has been se-

lected, we re-randomize the training and test-
ing datasets, re-execute the selected model ar-
chitecture 1000 times, with 2500 epochs of
training each, and choose the best instance.
For our selected 39-5-4 model, no instance of
this architecture exceeded 6.0 seconds of train-
ing. Using criteria similar to that used for
initial architecture selection, the instance with
the best testing accuracy and the fewest poten-
tial rules was chosen for actual rule extraction:
296/300 (99%) training accuracy, 70/76 (92%)
testing accuracy, and 128 (2*4*2*2*4 clusters)
estimated maximum rules.

4 Rule Generation

The rule extraction technique applied for this
research is a traditional decompositional ap-
proach, peering back through the trained net-
work with an emphasis on the values dynami-
cally generated by the hidden nodes. For each
hidden node, all values are automatically clus-
tered, and a representative (mean) value is as-
signed to each cluster. All combinations of
these mean values are evaluated against the
output node weights to determine the com-
binations (“candidate expressions”) producing
the desired outputs. The sets of candidate
expressions are simplified and re-expressed as
simple rules in terms of the original network
The rule extraction algorithm was
rewritten from scratch for this current research
phase, but is based on the original extraction
algorithm originally described in Schmidt, and
Schmidt and Chen |8, 14].

For the Divisia dataset, the Inflation out-
put is binned into four ranges, with each range

inputs.




representing the percentage of increase in infla-
tion compared to the corresponding quarter of
the previous year. Referring to Table 1, these
ranges are:

e Node 1: (-0.0033 ... 0.0124)
(treated as —oo ... 0.0124)

e Node 2: (0.0124 ... 0.0558)
e Node 3: (0.0558 ... 0.1116)
)

e Node 4: (0.1116 ... 0.1486
(treated as 0.1116 ... co)

The rule generator produces rules describing
each range separately, so each rule file corre-
sponds to a specific output node, representing
a specific range of output values. (The current
generation algorithm generously allows bound-
ary conditions between two nodes to be rep-
resented in both rulesets.) These rules are ex-
pressed in terms of the original input values for
readability.

Each file contains many rules, numbered for
reference by human readers for convenience.
If some combinations of attribute values (nc,
nibd, etc.) is described by any rule in a spe-
cific file, those values would be expected to re-
sult in the "inflation increase %" represented
by that node. I.e., all rules in the “node 3” out-
put file describe conditions producing inflation
increases in the range (0.0558 ... 0.1116) %.

Each line in a rule is formatted: (low _value
<— attr & attr <— high value) which is,
of course, the mathematical equivalent to:
low value <— attr <— high value. The sym-
bols “&” and “|” are logical “AND” and “OR”
operations, respectively, and Inf represents in-
finity. The logic of the rule must evaluate to
“TRUE” for the rule to be true. If a rule does
not include an attribute, then that attribute is
not required for the given rule.

Figure 2 shows an example of a rule ex-
tracted from our trained network. The example
clearly demonstrates the human-readable for-
mat and nature of extracted rules. This makes
them ideal for validation by subject-matter ex-
perts. Perhaps more importantly, these rules
can also be executed as code and applied to
new data.

Table 3 summarizes the key characteristics of
the extracted rules. Notice the actual number
of rules is different than the estimated maxi-
mum number of extracted rules. The maximum

Table 3: Neural Model vs. Extracted Rules

Neural Extracted
Model Rule Set
# Rules Estimated Actual
128 714
Test Dataset 70/76 70/76
Accuracy (92%) (92%)

number of rules is estimated as a function of the
number of training data vectors and their val-
ues, but the actual rules are generated based
on all possible combinations of input values.
(For this encoding of the Divisia dataset, there
were 75 training vectors, but the discretization
of inputs allows for 19208 distinct input vec-
tors, resulting in a higher number of rules than
estimated.) Also, the extraction algorithm re-
laxes some of the constraints of the original
network, allowing some data to potentially fall
into a different classification than selected by
the corresponding neural model. This can re-
sult in slightly different accuracy specifications
for the rule set versus the neural network, but
the results are generally very comparable. For
this encoding of the Divisia dataset, coupled
with this specific neural network instance and
rule extraction algorithm, the rules report es-
sentially the same results as the trained neural
network (with 98.47% accuracy).

The automated rule extractor found 96, 256,
282, and 80 rules for output nodes 1, 2, 3, and 4,
respectively, for a total of 714 rules, as reported
in the table.

5 Interpretation

The rules from all four generated files were ex-
amined by one of the authors, a subject-matter
expert in econometrics. Despite being exe-
cutable as code, the rules were found to be de-
scriptive and easy to read. Interesting patterns
were found merely by examining the rule con-
tent, and an initial analysis of these patterns is
presented here.

The general trend is for interest bearing de-
posits to have a higher impact on inflation than
the non-interest bearing ones. Hence interest
bearing deposits and building society deposits
are generally found to have a higher “relation-
ship” / impact upon inflation than non-interest



if

&
&
&
I

( (-Inf <= nc & nc <= -0.024308)

( (-0.045096 <= nibd & nibd <= -0.010042)
| (0.016850 <= nibd & nibd <= 0.034526))
(-Inf <= ibsd & ibsd <= 0.148376)
(0.132629 <= ibtd & ibtd <= 0.327074)

( (-Inf <= bsd & bsd <= 0.062672)
(0.111375 <= bsd & bsd <= 0.148103))

) return true;

Figure 2: Sample Generated Rule

bearing deposits and notes and coins. Put more
simply, higher yielding assets are found to have
a greater impact on inflation than lower yield-
ing assets. This finding may have more to do
with the volume of the asset than its user cost,
where user cost is calculated as:

L= P ()
where P* is true cost of living index, approxi-
mated by a consumer price index. R is the rate
of return of return on asset that yields no mon-
etary services. r is the own-rate of individual
monetary asset.

See Barnett [15] and Elger and Binner [5]
for a more detailed description of user costs of
monetary assets.

The generated rules look appealing from an
econometrician’s point of view; there is a de-
gree of stability about the results achieved over
the cases examined. These rules have poten-
tial for shedding new light on movements of
inflation, given any specific monetary policy
regime in operation at any time. Further ex-
perimentation is necessary to determine how
the rules correspond with weights derived from
user costs. This work would be of tremendous
interest for proponents of Divisia money and
merits further investigation in future research.

6 Conclusion

The goal in this paper was to choose a candi-
date architecture and examine the rules gener-
ated for the selected instance. The maximum
rule quantity estimate used as a part of the
architecture selection process provided useful
input, but may not have been an accurate por-
trayal of actual rules, since many rule instances
may be simplified after raw extraction. In ad-
dition, some rule sets may prove to be more

accurate than others, even when the number of
rules is similar. A more comprehensive inves-
tigation would include generating rules for all
candidates, comparing only the rule accuracy.
Since rule extraction is still a computationally
(and temporally) expensive process, this inves-
tigation must be postponed to a later date.

The selected architecture was successfully
mined for interesting and descriptive rules us-
ing a newly coded decompositional approach
that is much less computationally taxing than
the AFFNN-based algorithm the authors previ-
ously used. Once again, the rules were encoded
to be executable code, capable of processing
raw data independently of the original trained
neural network. Results demonstrate that the
resulting rules are faithful to the original net-
work to a high degree of accuracy.

Although it is beneficial to have executable
rules, the principle goal is to use the connec-
tionist model to identify relationships, then ex-
press the learned functions in a form useful to
subject-matter experts (in the case of Divisia
data, econometricians). Based on expert anal-
ysis, the generated rules are clearly valuable for
describing nuances of the Divisia/Inflation re-
lationship. These early results encourage con-
tinued research in this area.

Of course, the ultimate objective is to use
this technique as a economic tool for predic-
tion and control of inflation, leading to greater
economic stability. Calibration of these results
in a large scale macro model would be an in-
teresting route to pursue to determine the full
extent of the impact and implications of these
rules for the U.K. economy.

We have always intended to compare the re-
sults of this research to contemporary meth-
ods once the proof-of-concept has been demon-
strated. We hope that this phase of the study
will finally allow us to formulate a good ap-



proach for such a comparison.

Since many

other techniques produce equation coefficients
instead of specific rules, we are challenged to
design an appropriate experiment to ensure the
comparison is legitimate, fair, and conclusive.
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