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Abstract

This paper demonstrates a mechanism whereby

rules can be extracted from a feedforward neural

network trained to characterize the money-

price relationship, de�ned as the relationship

between the rate of growth of the money supply

and in�ation. Monthly Divisia component

data is encoded and used to train a group of

candidate connectionist architectures. One

candidate is selected for rule extraction, using

a custom decompositional extraction algorithm

that generates rules in human-readable and

machine-executable form. Rule and network

accuracy are compared, and comments are made

on the relationships expressed within the discov-

ered rules. The types of discovered relationships

could be used to guide monetary policy decisions.
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1 Introduction

In recent years the relationship between �money�
and the macroeconomy has assumed prominence
in academic literature and in Central Banks'
circles. Although some Central Bankers have
stated they have formally abandoned the notion
of using monetary aggregates as indicators of the
impact of their policies on the economy, research
into the link between some kind of monetary
aggregate and the price level is still prevalent.
Attention is increasingly turning to the method
of aggregation employed in the construction of
monetary indices. The most sophisticated index
number used thus far relies upon the formulation
devised by Divisia [1], with roots �rmly based in
microeconomic aggregation theory and statisti-
cal index number theory.

Our hypothesis is that measures of money
constructed using the Divisia index number for-
mulation are superior indicators of monetary
conditions when compared to their simple sum
counterparts. Our hypothesis is reinforced by a
growing body of evidence from empirical stud-
ies around the world which demonstrate that
weighted index number measures may be able to
overcome the drawbacks of the simple sum, pro-
vided the underlying economic weak separability
and linear homogeneity assumptions are satis-
�ed. Ultimately, such evidence could reinstate
monetary targeting as an acceptable method of
macroeconomic control, including price regula-
tion.
The theoretical case for weighted monetary

aggregates never has been challenged seriously.
Their potential for use in practice, however, has
been questioned on three fronts. First, criti-
cisms about the choice of a benchmark rate of
return and the treatment of risk when measuring
monetary user costs (both of which a�ect index
weights) suggest that such an index is subject to
unknown, and presumably large, measurement
error. Second, if the money stock were mea-
sured as the sum of its components, with each
weighted by its share of total expenditures on
monetary services, it has been alleged (without
evidence) that central banks would be unable to
in�uence the behaviour of such an index in the
pursuit of a monetary policy objective. Most
commonly, however, the case against the con-
struction, publication, and use of any superla-
tive index of money has been grounded in empir-
ical evidence showing that an o�cial simple sum
measure, in the context of a particular model,
time period, or set of tests, performs as well as
or better than a weighted index of the same asset
collection. In sum, these perceived shortcomings
have led most monetary economists and policy-



makers to conclude that the practical di�cul-
ties associated with �nding empirical proxies for
a weighted index's theoretical components and
explaining the behaviour of such an index to au-
thorities who monitor central bank actions more
than o�set the small marginal gains (if any) from
use of the index itself.
This paper addresses the problem of how best

to construct monetary aggregates, given the ex-
traordinary debate on this topic in the macroe-
conomics literature. A useful summary for 11
countries is provided in Belongia and Binner [2].
Even the superlative Divisia monetary aggre-
gates have been found to perform less than opti-
mally in the recent past using monthly US data
over the period 1960�2004 (see [3]), therefore
guidance on improved construction of the mon-
etary aggregates is a vital area for further re-
search. Our policy goal in this paper is in�ation,
the current focus of monetary policy targets in
the UK and most major macroeconomies in the
world today.
We have jointly examined various aspects of

�nding relationships in quarterly UK Divisia
data for several years (see [4] for the most re-
cent UK Divisia report), and recently applied
the same models (using an identical construction
approach) successfully to the US's MSI data [5].
Our work together began in 2002 with the use
of a specialized feedforward neural model tightly
coupled with a custom decompositional rule ex-
traction algorithm. These initial e�orts yielded
exciting results as a proof of concept, but the
rules were both numerous and complex. As
our research continued, we were able to demon-
strate the discovery of interesting relationships
using simpler and more standard feedforward
connectionist models, and using a newly decou-
pling and revised rule extraction algorithm fur-
ther simpli�ed and reduced the number of rules.
(These rules are still automatically produced as
a collection of Matlab-based human-readable
and machine-executable if-then rules, express-
ing the discovered relationships in terms of the
original data.)
This year we are able to use monthly (vs.

quarterly) Divisia data due to its availability,
and the complexity and quantity of the gener-
ated rules is reduced even further. This paper
describes our experimentation with the latest set
of monthly UK Divisia data, and compares these
models and results brie�y with those of the quar-

terly Divisia work and our recent departure into
the US MSI.

2 Dataset Preparation

Historical UK Divisia M4 and corresponding in-
�ation data was obtained1 in order to investi-
gate the relationship between money supply and
in�ation. The training data used for connec-
tionist model selection included monthly season-
ally adjusted values from January 1988 through
September 2007, a total of 117 exemplars. In-
�ation was constructed for each month as year-
on-year growth rates of prices. Our preferred
price series, the Consumer Price Index (CPI),
was obtained from DataStream. The CPI data
originated from the O�ce for National Statistics
(ONS) and all data was seasonally adjusted.
The data was prepared by calculating the per-

centage of increase in value for corresponding
months in consecutive years. This reduced the
dataset to 105 exemplars. The automated clus-
tering algorithm we've used in previous studies
(to examine quarterly Divisia data) was applied
again this time to discretize the monthly com-
ponent data. Components were represented us-
ing thermometer encoding. After inspection, in-
�ation was manually discretized into 3 distinct
ranges:

• in�ation % changed < 0.010

• in�ation % changed 0.010 � 0.020

• in�ation % changed > 0.020

In�ation was encoded using mutex (1-of-N) en-
coding. These two encoding schemes were se-
lected based on the successful training of quar-
terly Divisia data in our past work. (Mutex and
thermometer encoding schemes are commonly
used to prepare discretized data for neural net-
work consumption.)
Table 1 summarizes the components and en-

coding levels generated for each component, as
well as for in�ation. The table identi�es the type
of asset (component name), the component ID
# and symbol used to represent the component
for this study, the type of encoding used, and
the number discretized component levels. When
all components are used as inputs to the neural

1Component data is available on the Internet at
http://www.bankofengland.co.uk/statistics/index.htm
(Bank of England Statistical Interactive Database).



Table 1: Divisia M4 Encoding
Component (Attribute) ID # Symbol Encoding Levels

Notes and Coins 1 NC Thermometer 2

Non-Interest Bearing Bank Deposits 2 NIBD Thermometer 5

Interest Bearing Bank Sight Deposits 3 IBSD Thermometer 14

Interest Bearing Bank Time Deposits 4 IBTD Thermometer 9

Building Society Deposits 5 BSD Thermometer 2

ISA and TESSA (tax-free savings) 6 ISA Thermometer 6

In�ation N/A INFL Mutex 3

network, there are 38 binary-valued inputs to
the network, and 3 binary-valued outputs (rep-
resenting in�ation).

3 Neural Network Selection

A series of carefully controlled tests were per-
formed to determine the best type of simple
feedforward connectionist models to use for rule
generation. The 105 data cases were divided at
random into a training set (80%, 84 cases) and
a validation set (20%, 21 cases). The break-
out was examined to ensure that the compo-
nents and outputs were reasonably represented
in both the training and validation data. This
same randomly generated selection was used for
each test.
The results of these tests are summarized in

Tables 2, 3, and 4. The tables include columns
for training and validation �success� expressed as
a number and percentage of correct outputs. All
network architectures were trained to �nd the
INFL target, a set of 3 mutex-encoded binary
values corresponding to each data case. Train-
ing (and validation) success was measured by
determining the number of total binary matches
for all training (and validation) cases:

• Training: (84 cases)x(3 outputs) = 252

• Validation: (21 cases)x(3 outputs) = 63

For each candidate model architecture (table
row), 500 models with randomly generated ini-
tial conditions were trained for 2500 epochs
each, with the �best� model instance selected to
represent the speci�ed model architecture. It is
important to note that �best� is a somewhat ar-
bitrary term due to the way the �best� network is
selected in our study. When numerous networks
with discrete outputs are trained, they tend to

fall into classes, where multiple networks yield-
ing identical results all belong to the same class.
We simply choose a network from the class of
all networks yielding the most accurate training
and validation results. For comparison, the ta-
bles below indicate how many clusters the 500
trained networks fall into for each architecture
(�Net Clusters�), and how many of these 500 are
members of the �class of best networks� from
which our selection is made (�Qty�). This data
is intended to ease the minds of those concerned
with our selection of the �best network� for each
architecture as we proceed with our analysis.
No instance of any network trained for longer

than 6 seconds on the experimental machine, a
Slackware 10.1 Linux-based (custom SMP 2.6.13
kernel) dual AMD Opteron 244 system with 2Gb
RAM running Matlab 5.3 (R11). The neural
models executed in this study contained (except
where indicated otherwise) a single hidden layer
using Matlab's logsig function, a traditional
sigmoid activation function. The nodes in the
output layer use the unconstrained linear func-
tion (Matlab's purelin).
Table 2 is for models where only a single com-

ponent is used as an input to a network model
with 5 nodes in the hidden layer. Components 4
(IBTD) and 6 (ISA) seem to be the most reliable
individual indicators of in�ation, based on their
training accuracy of over 82%, but neither com-
ponent has an overwhelmingly good validation
accuracy (77-80%).
We also trained a series of models where the

inputs lead directly to the outputs (no hidden
layer). Surprisingly, these training and valida-
tion results (not shown here) were almost iden-
tical to the models trained with a single hidden
layer of 5 nodes as shown in Table 2.
As a quick test of sensitivity analysis, we also

trained a series of models where all components
except for one speci�c component were included



Table 2: Single Components as Inputs to n-5-3 FF Networks
ID Inputs Train (of 252) Valid. (of 63) Net Clusters Qty in Best Cluster (of 500)

1 2 198 / 78.57 % 45 / 71.43 % 1 500

2 5 196 / 77.78 % 45 / 71.43 % 4 317 (148, 34)*

3 14 203 / 80.56 % 49 / 77.78 % 5 1 (276, 183)*

4 9 216 / 85.71 % 51 / 80.95 % 2 277 (223)*

5 2 196 / 77.78 % 45 / 71.43 % 1 500

6 6 208 / 82.54 % 49 / 77.78 % 1 500

* Quantity in next best cluster(s) shown in parentheses for reference

as inputs. The rows of Table 3 identify the com-
ponent not included as inputs to the network.
All network models have 5 nodes in their hidden
layer for this series of tests.
A more traditional approach was also taken;

a collection of models was trained with various
numbers of nodes in the hidden layer. Table 4
re�ects the results of these tests, all of which
use all 6 components as inputs to the network
(38 encoded values in each input vector).
The goal of training various architectures is

to �nd an appropriate model from which a col-
lection of human-readable rules can be gener-
ated to accurately describe the dataset. Exper-
imental models using only a single component
as input, either with or without a hidden layer,
was not convincingly accurate enough to justify
continuing with these simpler models. Using all
but one component showed promise, but didn't
really suggest any speci�c component could be
easily eliminated.
The use of all components as inputs in the

model consistently yielded the best results.
Note, however, the excellent results the neural
model containing no elements in the hidden layer
(the row with H as �0� in the H column of Ta-
ble 4), hence no hidden layer. These results are
nearly as good as models containing 10 nodes in
the hidden layer!

4 Rule Generation

Since most of the models in Table 4 had a high
degree of accuracy in training and validation,
we chose to do rule extraction on the simplest
model, the network containing a hidden later
with the fewest (non-zero) number of nodes: the
38-2-3 model (2 nodes in the hidden layer). This
network is depicted in Figure 1.
Metrics were collected during rule extraction

in order to verify the rules would be a faithful

Hidden
Layer

Layer
Output

Input
Layer

INFL

 NC

 NIBD

 IBSD

 IBTD

 BSD

 ISA

Figure 1: Architecture Selection: 38-2-3

reproduction of the relationships learned by the
network. One intermediate test ran an exhaus-
tive combination of all possible discrete inputs
through the neural network, examining the dif-
ferences in output produced by the network and
the rule generation process. Table 1 indicates
the number of discrete bins for each input. The
total number of all combinations of possible in-
puts is a simple product of these values: 2 * 5
* 14 * 9 * 2 * 6 = 15120. Looking at each of
the three output nodes individually, the accu-
racy (compared to providing the same inputs to
the neural network) of the intermediate rule ex-
traction is (in number of mismatches per 15120):

• Node 1: 6 mismatches, 99.96% match

• Node 2: 21 mismatches, 99.86% match

• Node 3: 5 mismatches, 99.97% match

Although this check is merely a quick test taken
during the extraction exercise, it is encouraging



Table 3: Single Components Excluded as Inputs to n-5-3 FF Networks
ID Inputs Train (of 252) Valid. (of 63) Net Clusters Qty in Best Cluster (of 500)

1 36 244 / 96.83 % 61 / 96.83 % 16 1 (4, 15)*

2 33 244 / 96.83 % 62 / 98.41 % 16 2 (7, 12)*

3 24 234 / 92.86 % 61 / 96.83 % 8 8 (110, 117)*

4 29 228 / 90.48 % 63 / 100.0 % 15 1 (2, 6)*

5 36 244 / 96.83 % 61 / 96.83 % 16 2 (5, 25)*

6 32 236 / 93.65 % 58 / 92.06 % 17 2 (3, 6)*

* Quantity in next best clusters shown in parentheses for reference

Table 4: All Components, Variable Hidden Layer Nodes in 38-n-3 FF Networks
H Train (of 252) Valid. (of 63) Net Clusters Qty in Best Cluster (of 500)

0 244 / 96.83 % 60 / 95.24 % 6 16 (88, 203)*

2 242 / 96.03 % 61 / 96.83 % 15 6 (4, 43)*

3 242 / 96.03 % 62 / 98.41 % 17 2 (6, 3)*

4 244 / 96.83 % 62 / 98.41 % 16 2 (4, 7)*

5 244 / 96.83 % 62 / 98.41 % 17 1 (3, 9)*

6 244 / 96.83 % 63 / 100.0 % 18 1 (2, 6)*

7 244 / 96.83 % 62 / 98.41 % 16 1 (5, 10)*

8 244 / 96.83 % 63 / 100.0 % 16 1 (1, 8)*

9 244 / 96.83 % 62 / 98.41 % 17 1 (4, 10)*

10 244 / 96.83 % 61 / 96.83 % 14 3 (11, 29)*

* Quantity in next best clusters shown in parentheses for reference

to see the high correlation between the trained
network and the �intermediate� extracted rules.
The rule extraction technique applied for this

research is a traditional decompositional ap-
proach, peering back through the trained net-
work with an emphasis on the values dynami-
cally generated by the hidden nodes. For each
hidden node, all values are automatically clus-
tered, and a representative (mean) value is as-
signed to each cluster. All combinations of these
mean values are evaluated against the output
node weights to determine combinations (�can-
didate expressions�) producing the desired out-
puts. These candidate expressions are simpli�ed
and re-expressed as simple rules in terms of the
original network inputs. This is the same rule
extraction algorithm we devised for our previ-
ous Divisia and US MSI research e�orts, based
on the algorithm originally described in Schmidt
and Chen [6].
The automated binning algorithm originally

separated INFL outputs into �fteen bins, but
we arti�cially re-binned the outputs into three
groups. This is more consistent with the auto-
mated results from our previous research, and
still yields an excellent mix of potential outputs
among the bins. The bins for these outputs are:

• Node 1: (−∞ ... 0.01)

• Node 2: (0.01 ... 0.02)

• Node 3: (0.02 ... ∞)

The rule generator produces rules describing
each range separately, so each rule �le corre-
sponds to a speci�c output node, representing
a speci�c range of output values. (The current
generation algorithm generously allows bound-
ary conditions between two nodes to be repre-
sented in both rulesets.) Note that these rules
are expressed in terms of the original input val-
ues for readability, verses the encoded forms.
Each �le contains a list of rules, numbered for

reference by human readers for convenience. If
some combinations of attribute values (nc, nibd,
etc.) is described by any rule in a speci�c �le,
those values would be expected to result in the
"in�ation increase %" represented by that node.
I.e., all rules in the �node 2� output �le describe
conditions producing in�ation increases in the
range (0.01 ... 0.02) %.
Each line in a rule is formatted: (low_value

<= attr & attr <= high_value), the mathe-
matical equivalent to: low_value <= attr <=
high_value. The symbols �&� and �|� are logical



if (

(-Inf <= nc & nc <= 0.091411) ...

& (-Inf <= nibd & nibd <= 0.447313) ...

& ( (0.076953 <= ibsd & ibsd <= 0.106028) ...

| (0.116952 <= ibsd & ibsd <= 0.122060)) ...

& (0.122171 <= ibtd & ibtd <= 0.190650) ...

& (-Inf <= bsd & bsd <= 6.845814) ...

& (-Inf <= isa & isa <= 0.186993) ...

) return true;

Figure 2: Sample Generated Rule

Table 5: Generated Rule Accuracy
Output Rule Training set Validation set

Node Qty (correct, of 84) (correct, of 21)

1 57 82 (97.62%) 20 (95.24%)

2 64 79 (94.05%) 19 (90.48%)

3 10 81 (96.43%) 21 (100%)

�AND� and �OR� operations, respectively, and
Inf represents in�nity. The logic of the rule must
evaluate to �TRUE� for the rule to be true. If a
rule does not include an attribute, the attribute
is not required for the given rule.
Figure 2 shows an example of a rule extracted

from our trained network. The example clearly
demonstrates the human-readable format and
nature of extracted rules. This makes them ideal
for validation by subject-matter experts. These
rules can also be executed as code and applied
to new data.
Table 5 shows the number of rules generated

for each output node. The original unencoded
training and validation data were processed by
the rule �les, with the outputs tested against
the known targets for each dataset. The ta-
ble clearly indicates a good match between the
learned relationships (rules) and the actual data.
Once again, the chief value provided by the

rules is that they are human-readable and can
be vetted by a subject-matter expert (econome-
trician, in this case), while also being machine-
executable.

5 Interpretation

The generated rules in all three output �les
were examined by one of the authors, a subject-
matter expert in econometrics, for speci�c ap-
plications in economic theory. Although the
rules are expressed as executable code, they were
found to be descriptive and easy to read.
Inspection of the rules indicates exactly the

same trend as we saw in our analysis of US MSI

data: higher yielding assets have higher impact
on in�ation than the lower yielding assets, which
conforms with the construction of Divisia / MSI
aggregates. This adds credence to the argument
that we should construct statistically weighted
aggregates as our money supply measure.
These conclusions continue to be consistent

with our own previous analysis of UK Divisia
quarterly data, our recent work with US MSI
data, and contemporary published results from
other sources. See Barnett [7] and Elger and
Binner [8] for a more detailed description of user
costs of monetary assets.
There are also some interesting relationship

patterns that can be seen from simple inspec-
tion of the resultant rules. Table 6 shows the
frequency of occurrences of components within
the generated rules. From the Table, all of the
components are generally important inputs for
describing the learned relationships. IBSD and
IBTD are frequently included multiple times to
describe cases when �INFL % increase < 0.02�
(the �rst two columns of the Table). (See Fig-
ure 2 for an example where IBSD is referenced
twice in the same relationship.) In addition, the
last column of the Table shows that BSD and
ISA are only important about half of the time
for the relationships describing �INFL increase
> 0.02.� The implications of these results will
merit closer evaluation. In most cases the rule
complexity is fairly low, with each component
being mentioned only once per relationship.
It is worth noting that, for the monthly Di-

visia data, there are 131 total rules across three
output nodes (57 + 64 + 10), with a minimum
accuracy of 90%. Our most recent quarterly Di-
visia experiments yielded 714 rules (96 + 256
+ 282 + 80) for four output nodes. The best
results of our US MSI study yielded 116 rules
across three outputs, but accuracy varied be-
tween 75% and 92% for each output.

6 Conclusion

The goal of this research e�ort was to gener-
ate rules describing the relationship of monthly
Divisia component data as it applies to predic-
tion of in�ation. A collection of connection-
ist models were trained to learn these relation-
ships, then a representative model was chosen
for rule extraction. The successfully generated
rules were shown to be reasonable in number, ac-
curate with respect to both training and valida-



Table 6: Component Frequency of Occurrence
Component Output 1 (of 57) Output 2 (of 64) Output 3 (of 10)

Name (INFL < 0.01) (0.01 < INFL < 0.02) (0.02 < INFL)

NC 57 / 100% 58 / 91% 10 / 100%

NIBD 57 / 100% 64 / 100% 9 / 90%

IBSD 87 / 153% 92 / 144% 10 / 100%

IBTD 64 / 112% 79 / 123% 10 / 100%

BSD 57 / 100% 61 / 95% 4 / 40%

ISA/TESSA 62 / 109% 67 / 105% 6 / 60%

tion data, a faithful representation of the trained
neural network, and (most importantly) easy for
econometric experts to visually examine. These
rules, expressed in terms of the original unen-
coded data, are also machine-executable Mat-

lab code, and can be used independently of the
original neural network.
The data used in this series of experiments

included the ISA/TESSA term. The inclusion
of this term proved to be a valuable addition
to the �ve terms already used in previous mod-
els. The seasonally adjusted monthly data also
yielded superior modeling results and rule qual-
ity when compared to the seasonally adjusted
quarterly Divisia data we've used in the past.
The results we report in this series of experi-
ments is also consistent with other contempo-
rary published model results.
It is our hope that techniques such as the one

represented here can be commonly employed to
provide useful inputs for prediction and control
of in�ation. Calibration of these results in a
large scale macro model would still be an in-
teresting route to pursue to determine the full
extent of the impact and implications of these
rules for the U.K. economy.
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