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Abstract

This paper demonstrates a mechanism whereby
rules can be extracted from a feedforward neural
network trained to characterize the inflation “pass-
through” problem in American monetary policy, de-
fined as the relationship between changes in the
growth rate(s) of individual commodities and the
economy-wide rate of growth of consumer prices.
Monthly price data are encoded and used to train a
group of candidate connectionist architectures. One
candidate is selected for rule extraction, using a
custom decompositional extraction algorithm that
generates rules in human-readable and machine--
executable form. Rule and network accuracy are
compared, and comments are made on the relation-
ships expressed within the discovered rules. The
types of discovered relationships could be used to
guide monetary policy decisions.!
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1 Introduction

In recent years the relationship between changes
in the prices of individual goods and services and
overall consumer inflation has assumed prominence
in academic literature and in Central Banks’ cir-
cles. Some Central Bankers explicitly have ac-
cepted that only aggregates of subsets of consumer
prices should be objectives of monetary policy,
while others prefer overall “headline” inflation as a
target. Perhaps the most prominent among the for-
mer is the U.S. Federal Reserve, which has accepted
the core (excluding food and energy prices) chain-
price index for personal consumption expenditures
(“core PCE”) as its policy objective. Among the
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latter are the Bank of England and the European
Central Bank, which prefer the headline measure
because it includes all the products purchased by
consumers, including food and energy. Despite
their differences, all Central Bankers desire a rela-
tively low and stable trend in inflation. The ability
of Central Bankers to attain this goal depends, in
part, on their own behavior. Suppose the price of
energy increases sharply. What is the reaction of
other prices? If most households and firms believe
the Central Bank will seek to prevent any increase
in the overall rate of inflation, then prices of goods
other than energy will tend to fall—policy put in
place by the Central Bank will limit aggregate de-
mand in the economy for goods and services un-
til such price decreases occur, thereby achieving
their overall objective of stabilizing the trend rate
of growth of the overall headline price level. But,
suppose instead that most households and firms
believe the Central Bank fears slower economic ac-
tivity and its accompanying higher unemployment
and political difficulties. In this case, the Cen-
tral Bank will not implement policies to prevent
the increase in the headline inflation rate—and the
firms and households will reasonably believe that
no pressure via slower economic activity will arise
to force lower prices. The relationships that link
movements in individual prices to the aggregate in-
flation trend are difficult to estimate because they
vary through time. Changes in a nation’s political
leadership may refocus concern on price stability
versus more rapid growth of economic activity. In
addition, the pattern of price increases across goods
and services changes through time. The pattern of
external shocks (such as weather patterns and en-
ergy prices) affecting the economy varies, as do the
levels of economic activity in trading partner coun-
tries. Further, the opinions to firms and households



may differ among goods, with some price changes
eliciting strong reactions and others little if any re-
action. Such variation will affect the strength and
pattern of pass-through from changes in individual
prices to the overall headline inflation rate. Our
goal is to test whether the strength of the pass-
through effect is larger for some prices than for oth-
ers. Energy prices often are regarded as the most
likely to have large pass-through effects because en-
ergy is purchased frequently and, via transport, is
an essential input to the availability of many other
products. Prices of consumer durable goods, such
as cars and home furnishings, are expected to have
the weakest pass-through because these purchases
are more readily deferred. Intermediate are prices
for foods because less expensive food products may
be substituted when prices increase sharply.

Our work is related to a large literature on the
broader economic effects of oil price shocks, most
notably Hamilton [1], which documents a statis-
tical link between oil price shocks and post war
recessions in the United States. This study, along
with those of Hooker [2| and Barsky and Kilian [3]
debates the robustness of important real and infla-
tionary effects of oil price shocks to different price
specifications, assumptions of exogeneity, and, im-
portantly, evidence of a weakening of the effects of
oil prices in more recent data. The sustained in-
creage in oil prices spanning the end of 2001 until
the summer of 2008 has generated a plethora of
papers reporting a reduction on the pass-through
of energy prices to broader inflation in the United
States and elsewhere (see for example [4-9]). Re-
cent surveys of the economic literature on energy
prices can be found in Segal [10] and Kilian [11].
In general, the appreciation of the domestic cur-
rency, a more active monetary policy in response
to inflation, and a higher degree of trade openness
are found to explain the decline in oil price pass-
through, although the evidence has largely relied
on relatively simple methods of assessing changes
over time.

This paper addresses the problem of whether
policymakers should respond strongly to changes
in individual prices, that is, whether they should
anticipate a strong reaction of the headline infla-
tion trend.

Our techniques in this study are similar to ones
we have used previously to study the relationship
between movements in individual financial assets

held by households and firms and economy-wide
headline inflation [12]. We discover interesting re-
lationships using simple and standard feedforward
connectionist models; using a newly designed and
revised rule extraction algorithm further simplified
and reduced the number of rules. (These rules
are still automatically produced as a collection
of MATLAB-based human-readable and machine-
executable if-then rules, expressing the discovered
relationships in terms of the original data.) Our
data are monthly, published by the U.S. Bureau of
Labor Statistics.

An explanation of our experimentation follows,
to include a description of the identification of indi-
vidual assets and their encoding, details regarding
the selection and training of the neural network
architecture, and subsequent rule extraction and
representation. The discussion of the rules is ex-
pected to add insight that could be used to guide
monetary policy decisions.

2 Dataset Preparation

Historical U.S. consumer price index data, for the
aggregate index and its components, were obtained
in order to investigate the relationship between
changes in the component prices and several trend
estimators applied to the headline index. Our over-
all index is the Bureau of Labor Statistics CPI-RS,
a research series that has been constructed for his-
torical dates using the same definitions and meth-
ods used for newly published data (see [13]). The
beginning of our data is limited by the availability
of components. The training data used for connec-
tionist model selection included monthly seasonally
adjusted values from December 1977 through De-
cember 2009, a total of 385 exemplars. Inflation
was constructed for each month as year-on-year
growth rates of prices. All data are obtained from
the web site of the U.S. Bureau of Labor Statis-
tics. Table 1 enumerates the components available
within this dataset.

The component data were prepared by calculat-
ing the percentage of increase in value for corre-
sponding months in consecutive years. The trend
in headline inflation was prepared as a 12-period
lagged moving average of the headline monthly
rate. This reduced the dataset to 373 exemplars.
The automated clustering algorithm we’ve used in
previous studies (there, to examine quarterly Di-



Table 1: Component Data
Variable ‘ Description

urs all items, sa

ursxfdg all items except food and energy, sa

ursn all items, nsa
ursfn food & bev
ursfdn food

urshn housing
ursan apparel
urstn transportation
ursmn medical care
ursennn | entertainment and recreation

ursxfdgn | all items less food and energy

ursegn energy

Table 2: Inflation % change ranges
‘ Category ‘ Inflation % change Range ‘
1 < 1.25%
(1.25%, 2.0%)
(2.0%, 3.0%)
(3.0%, 5.0%)
(5.0%, 9.0%)

> 9.0%

| U | W | N

visia data) was used again this time to discretize
the monthly component data.

Components were represented using thermome-
ter encoding. After inspection, the headline in-
flation trend was manually discretized (using mu-
tex, or 1-of-N, encoding) into the six distinct ranges
indicated in Table 2. These encoding schemes were
selected based on the successful training of quar-
terly Divisia data in our past work. (Mutex and
thermometer encoding schemes are commonly used
to prepare discretized data for neural network con-
sumption.)

The dataset was visually inspected before con-
sidering any specific neural network architecture in
order to select the input components most likely to
influence inflation. (Reducing the size of the input
dataset results in a desirable reduction of network
and rule complexity, as long as accuracy is not sac-
rificed with such a decision.) Based on this ini-
tial inspection, it was determined that transporta-
tion (URSTN) and energy (URSEGN) seemed to
be the candidates most capable of influencing infla-
tion (URSN). The graph shown in Figure 1 (top of
next page) depicts the recalculated values of these
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Figure 2: Inflation (y) vs sorted by % increase (x)

categories of data, independently scaled to empha-
size the relationship of transportation and energy
to inflation. Although the details of this graphic
are nearly unreadable at this size, the important
point of this figure is to note how closely the infla-
tion trend is tracked by transportation and energy
trends.

Once the categories were selected and recom-
puted, the clustering algorithm originally devel-
oped by Schmidt [14] was used to automatically
bin the inputs (transportation and energy) into 12
and 17 bins, respectively. Table 3 identifies the
input components selected for training, and enu-
merates the breakpoints between the bins for these
inputs. The bins are used to recode the original
inputs into thermometer-encoded binary vectors,
which are presented to the network for training and
for testing.

The same algorithm was originally used to clus-
ter the inflation values, but inspection of the values
and a small test of manually selected breakpoints
resulted in the binning for inflation indicated in Ta-
ble 2. The inflation output was recoded as a 1-of-N
binary vector of length 6, where a single true value
indicates the desired representative bin. Figure 2
shows the inflation values, sorted by percentage of
change, for all data points. It is evident that rea-
sonable breakpoints happen near 0.0125, 0.02, 0.03,
0.05, and 0.09 on the Y axis (increase ratio), as in-
dicated by slope changes in the graph. (The points
near 0.0125 and 0.05 are the most evident; oth-
ers are reasonable rough estimates based on slight
changes in the slope. More detailed future analysis
should yield more precise breakpoints.)
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Figure 1: URSN, URSTN, URSEGN values

Table 3: Transportation & Energy encoding

’ Category (Attribute) ‘ Symbol ‘ Levels ‘

Breakpoints Between Bins

20.1213 | -0.1012 | -0.0707 | -0.0325

Transportation URSTN 12 -0.0111 | 0.0147 0.0746 0.1358
0.1666 | 0.1925 | 0.2209

20.2652 | -0.2048 | -0.1074 | -0.0221

0.0508 | 0.1067 | 0.1390 | 0.1637

Energy URSEGN | 17 0.1857 | 0.2151 | 0.2535 | 0.2825

0.3214 | 0.3716 | 0.4091 | 0.4470

The input and output encoding suggests the neu-
ral architecture will have 29 (12 + 17) binary-
valued inputs and six binary outputs. Although the
neural model uses these binary vectors for training
and testing, the final extracted rules are expressed
in terms of the original continuous-valued data (ra-
tio of increase, year-on-year, for each component).
This is the same data preparation and encoding
style we’ve used for UK Divisia and US MSI ex-
periments performed in previous years [15, 16].

3 Model Selection & Analysis

Our model continues to evolve as we learn from
the successful (and not quite so successful) studies
we’ve executed with UK Divisia data and US MSI
data in the past. The Research Series we use in
this year’s experiment is (in general) larger than
similar data we’ve had before, allowing for a more
robust-sized training and testing dataset. Access to
a greater quantity of relevant data is almost always
preferable when it comes to training and testing
neural networks.

A collection of feedforward neural models was
trained, where the number of nodes in the hidden
layer was the only parameter changed; networks
with 2, 3,4, 5,6, 7,8,9, and 12 hidden layer nodes
were tested. For all networks, the single hidden
layer applied a traditional sigmoid activation func-
tion (MATLAB’s logsig function), and the uncon-
strained linear function (MATLAB’s purelin) was
used for the six nodes at the output layer.

All candidate architectures were provided the
identical set of randomly selected input/output
pairs. Of the 373 data points available, 65% (242)
were randomly chosen for training, and the re-
maining 35% (131) were used for testing the resul-
tant network. All networks were trained for 2500
epochs, and for each architecture, the single best
of 25 instances was chosen for evaluation. Note
that the best network instance?® was defined as the

2 Although 25 network instances were trained, solutions
tend to fall into small number of “classes” or “categories.” In
this case, the best network is merely a reasonably random
selection of a single solution from the category of networks
exhibiting the most desirable behavior. Any network in-
stance within this class would be a suitable selection for
rule extraction. Also, we are merely using the network to
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Figure 3: Architecture Selection

instance with the highest training and testing ac-
curacy. All model execution was performed us-
ing MATLAB 5.3 (R11) on a Slackware 11.0 Linux-
based system running within a VirtualBox virtual
machine on an AMD Athlon 64-X2 with 2Gb RAM.
No instance of model training, in any configuration,
exceeded 9.5 seconds.

In general, we’d like to extract rules from the
most accurate network with the least number of
nodes in the hidden layer in order to avoid combi-
natorial explosion during rule extraction. Interest-
ingly, all networks claimed accuracy in the range
of 87%—89% for training data, and 82%—84% for
testing data. Although this would suggest we se-
lect the network model with two nodes in the hid-
den layer, constraints in the way the rule extractor
operates forced us to choose the model with five
nodes in the hidden instead; no smaller network
architecture was able to produce the intermediate
states required for rule extraction. (We do not go
into further detail about these constraints here.)
A representative drawing of the selected network
architecture is shown in Figure 3.

We continue to rely on a decompositional ap-
proach to rule extraction, the same approach used
in our previous research and described in detail in
Schmidt [14], and Schmidt and Chen [17].

There are six nodes in the output layer. For
any given input, only a single node should gen-
erate True, while the remaining five nodes gener-
ate False. Extracted rules should replicate this be-
havior: the rules based on a specific output node
should return True or False for exactly the same
input values as the neural network. Our hope is

discover and describe relationships within the data. The
extraction algorithm generates rules, the “real” product of
this exercise, which are close, but not exact, representations
of the selected neural network. This further decouples the
specific network from the end result.

that the actual set of rules representing an output
node is descriptive and can be easily validated by
a subject matter expert. (More detail about the
actual rules is given in the next section). Table
4 highlights these points. For each output node,
the range of outputs in that bin is identified, along
with the number of rules covering this node, and
the training and testing accuracy for the rules.

The table also includes “Train Targets” and “Test
Targets” columns. These columns indicate the
number of targets of training and testing data as-
sociated with each output node (bin).

4 Rule Analysis

There are six output nodes, corresponding to the
ranges shown in the previous section. The rule gen-
erator produces a separate file representing rules
describing each range of values. All rules within
a file are tested against the input variables (here,
% increase for each variable). If any rule in the
file “matches” an input data exemplar, that data is
said to be represented by the output range defined
by that file. For example, all rules in the “node 5”
output file describe conditions producing inflation
increases in the range 5%—9%.

All of the rules are represented as a collection of
expressions in an if-then statement. Each expres-
sion is formatted like: (low value <= attr & attr
<= high value), the mathematical equivalent to:
low value <= attr <= high value, where “attr” is
the value of the attribute being tested. The sym-
bols “&” and “|” are logical “AND” and “OR” op-
erations, respectively, and Inf represents infinity.
The logic of the entire rule must evaluate to True
for the rule to be true. If a rule does not include
an attribute, then that attribute is not required for
the given rule. The rules are also numbered for our
(human) reference.

Figure 4 shows an example of a rule (rule #3
from node 2’s output, in this example) extracted
from our trained network. Note the explicit ref-
erence to the continuous values of wrstn (trans-
portation) and wursegn (energy). Also note the
human-readable format and nature of extracted
rules, which makes them ideal for validation by
subject-matter experts. Since the rules are also
represented as MATLAB code, they can also be ex-
ecuted by computer and applied to new data.



Table 4: Rule Accuracy

Output | “Inflation % change” # Train Test Net Train Accuracy | Net Test Accuracy
Node Range (min,max) Rules | Targets | Targets | Correct of 242, % Correct of 131, %
1 < 1.25% 4 10 9 (237) 97.93% (127) 96.95%

2 (1.25%, 2.0%) 4 32 16 (223) 92.15% (116) 88.55%

3 (2.0%, 3.0%) 3 72 41 (174) 71.90% (85) 64.89%

4 (3.0%, 5.0%) 6 90 44 (182) 75.21% (84) 64.12%

5 (5.0%, 9.0%) 4 18 12 (230) 95.04% (117) 89.31%

6 > 9.0% 5 20 9 (240) 99.17% (123) 93.89%

% true if input matches rule 3

) return true;

if ( (-0.032497 <= urstn & urstn <= -0.011131)
& ( (-Inf <= ursegn & ursegn <= 0.215139)
| (0.253502 <= ursegn & ursegn <= 0.282514)
| (0.321399 <= ursegn & ursegn <= 0.371623))

Figure 4: Sample Generated Rule

The rules from all six generated files were ex-
amined independently by the authors (two are
subject-matter experts in econometrics & finance).
Despite being executable as computer code, the
rules were found to be descriptive and easy to read.
Interesting patterns were found merely by examin-
ing the rule content.

An initial examination of the rules indicates the
rules generated for the 6 nodes of headline infla-
tion vary little in complexity. From Table 4 note
that node 3, corresponding to headline inflation
between 2 and 3 percent, has the smallest num-
ber of rules, three. These rules, as a group, also
display the weakest dependence of headline infla-
tion on movements in energy and transport prices.
This is completely reasonable: the rules reflect the
judgment of many observers that in the absence of
large shocks the Federal Reserve generally is sat-
isfied with inflation between 2 and 3 percent per
annum. In contrast is node 6, with a monthly head-
line CPI inflation rate exceeding 9 percent. Infla-
tion that rapid was observed only in one epoch:
May 1979 to September 1981, when inflation was
consistently greater than a 9 percent annual rate).
Interpreted as a stochastic process, headline in-
flation has never again revisited rates that high.
Energy prices also increased at an unusually rapid
pace: 20 percent per annum in May 1979, peaking
at a 47 percent pace in May 1980, and continuing
at more than a 10 percent pace through December

1981. It would be 20 years until energy price infla-
tion once again reached a 20 percent rate in March
and June 2000—Dbut then headline inflation was at
a 3.7 percent pace. Three of the five rules focus on
rapid energy price inflation; one rule includes 16 of
the 17 bins for energy price inflation (!), and one
rule excludes energy entirely while including only
very large increases in transport costs. Consider-
ing the unusual type of shocks that generate such
inflation, the rules do a reasonable job of capturing
the functional linkages.

5 Conclusions & Future Work

The rules are in line with our priori expectations
based on common findings in the economics lit-
The U.S. Federal Reserve has accepted
the core (excluding food and energy prices) chain-
price index for personal consumption expenditures
("core PCE") as its policy objective. From a di-
agram comparing the contents of the rules to the
binning of transportation and energy inputs (not
included here due to space constraints), it is clear
that the ranges used in the rules for energy have
wide variability. The series is highly volatile and
thus from a policy perspective, energy is nearly use-
less as a predictor of headline inflation. It appears
in a number of rules, yes, but with a wide range of
values. This is consistent with the economics liter-
ature; energy fluctuates so wildly that it is difficult

erature.



to infer much from the fluctuations. An interest-
ing future study would be to determine exactly how
to use these rules as a means of applying suitable
weights to the components of personal consump-
tion expenditure to take account of the volatility
such that food and energy prices could be included
by monetary policymakers in their decision mak-
ing. Food and energy prices are clearly important
components of households everyday budgeting de-
cisions and ideally should be included for policy
purposes. This is the subject of ongoing research.
In our future research we hope to test these rules
in an out-of-sample forecasting framework to gain
futher insights into their validity. A comparative
analysis using discrete multivariate statistics or, al-
ternatively, embedding these rules into a DSGE
macro model would yield new insights from a pol-
icy perspective.
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