
A Graphical Framework for
Constructing and Executing Computational Networks

Christopher L Hall
Consortium Research Fellows Program

Dayton, OH, USA

Vincent A. Schmidt
US Air Force Research Laboratory

Wright Patterson Air Force Base, OH, USA
Vincent.Schmidt@wpafb.af.mil

(Corresponding author)

Abstract— Research in multispectral data visualization
frequently consists of experimenting with combinations of a
variety of fusion and visualization algorithms. This paper
describes the design and development of a flexible GUI-based
software utility that can be used to rapidly construct networks of
configurable filters to be used in multispectral visualization
research.

Keywords-model execution; simulation

I. INTRODUCTION

Research in multispectral data visualization frequently
consists of experimenting with combinations of a variety of
fusion and visualization algorithms. Formal experiments
generally include evaluation by human subjects, and the
mandatory approval processes for conducting these
experiments can be long and tedious. In addition, the system
design and programming effort required to generate the
specific software used in the experiments is also time-
consuming, even though the primary difference between
experiments is often only the image stimuli and the selection of
fusion and visualization algorithms. It occurs to us that
considerable time and effort could be saved if the experimenter
had the ability to easily and quickly evaluate potential
combinations of algorithms (we alternately refer to as “blocks”
or “filters”) without heavily relying on software personnel.

Thus, it is beneficial to be able to rapidly construct a
network of algorithm building blocks, each with its own set of
defining parameters, as a preliminary experiment prior to full-
scale study development. This paper describes the design and
development of a flexible GUI-based software utility that can
be used to rapidly construct models (networks of configurable
filters) to be used in multispectral visualization research. An
experimenter with little or no software development experience
can use the building blocks to graphically construct and test a
specific filter network configuration, and software personnel
could assist when the final configuration is selected, if
required. This allows the experimenter the freedom to
investigate optimal or interesting filter settings and
combinations of filters prior to committing to developing
specific filtering software to use in an experiment. (As an
additional benefit, the GUI-based application can also be used
by intelligence analysts to construct interesting and useful filter
networks for examining individual frames of multispectral
imagery.)

II. CONCEPT DESCRIPTION

The concept behind the software allows the GUI tool to
import a variety of models without loss of generality. As a
proof of concept, the original models were developed as simple
binary logic design operations (AND and OR gates) and were
used to demonstrate logical operators on input files containing
lists of binary vectors. Within a single day, a small set of filter
functions and models were developed for basic manipulation of
JPG image files, demonstrating the versatility of this design for
use in multispectral image analysis.

The user graphically adds and connects blocks within a
network graphically, where each block represents a specific
algorithm (filter). The set of filters is fully dynamic and
customizable. New filters can be easily added by generating
appropriate software code into the filter files. The network
connectivity between filters is intended to be very general,
allowing filters to have multiple inputs, multiple outputs, and
individual outputs connecting to multiple filters. (The current
execution mechanism does not allow for recurrent, or cyclic,
networks; only feedforward networks are currently supported.)

Filters are not limited to single inputs (such as binary
values or individual JPG files), but can also be programmed to
accept multiple data inputs. For example, a block that accepts
three frames of multispectral imagery might implement a data
fusion algorithm, or a block that takes two JPG image frames
as inputs might output the frame with a higher information
content. As another example, consider a filter that takes
multiple images (from different viewpoints) as inputs and
generates a 3D model.

Specific filters could also be designed to operate on data
streams. For example, a filter might accept a stream of UAV
imagery and perform video stabilization operations, outputting
the stabilized stream. Another filter might simply read an
image stream and output individual graphics frames, or input a
stream of audio and output the stream with noise reduction
applied.

The design also allows for each graphical building block to
display intermediate results as data passes through the network.
The display mechanism can be selected by the user (e.g. actual
image, histogram, EXIF data, explicit value, etc.) from a list of

mailto:Vincent.Schmidt@wpafb.af.mil

display options. New display functions are easy to add, limited
only by the complexity of implementation.

III. IMPLEMENTATION

The entire application (including filter blocks and display
functions) is implemented as a collection of functions written
in the cross-platform Python programming language. Python is
a byte-code-compiled object-oriented scripting language with
outstanding support and a robust set of development features
and libraries. The software can be executed in Microsoft
Windows, Linux, or any other operating system supporting
Python and the Gtk graphics libraries. If needed, algorithms
written in other computing languages can be directly integrated
into the application using mechanism available through Python.

Executing the application consists of loading the model and
indicating the input source(s). Inputs are cycled sequentially
through the network, with intermediate results being displayed
(when this feature is selected) as execution occurs. Final
outputs can be written to files or simply displayed to the user.

Steps can be taken within the model to ensure validity and
applicability of inputs to each filter as incremental processing
occurs. This is accomplished through dynamic type checking,

and facilitates filter debugging and execution. The graphic
filter representations (shown on the screen) are also fully
customizable, and can be designed using drawing constructs, or
simply loaded as predesigned graphics files.

IV. CONCLUSION

Flexibility is the key to this utility. Once filters are coded, non-
programmer experimenters are able to graphically design and
test applicable filter network configurations without requiring
additional software support. The development of additional
filters further increases the base of available building blocks.
The ability of the application to easily integrate filters coded in
other languages encourages the filter library to be increased
quickly and efficiently. This GUI based tool is very useful,
providing researchers greater flexibility in facilitating the
design and execution of multispectral experiments.

Our research effort involves the complete implementation
of the graphical utility described herein. Several components
have already been tested, and additional capability is being
added very quickly. Our primary goal is to provide
multispectral imagery researchers and analysts a tool that can
be used to further guide their own research decisions.

