
PRACTICAL TECHNOLOGIES FOR 
IMPLEMENTING DISTRIBUTED APPLICATIONS 

AS EVOLVABLE SOFTWARE SYSTEMS (ESS)
Kendall O. Conrad  

Air Force Research Laboratory  
Wright-Patterson AFB, OH 45345  

Vincent A. Schmidt  
Air Force Research Laboratory  

Wright-Patterson AFB, OH 45345  
 

Abstract - The Evolvable Software Systems (ESS) concept 
allows software to keep up with the changing requirements 
in work and reduces costs associated with upgrading 
software. Many technologies exist that can be used to 
create ESS-based enterprise software, and selecting the 
appropriate technologies can be difficult. We propose a 
classification scheme intended to divide software 
technologies into categories that support certain aspects of 
ESS. Representative technologies are surveyed to 
determine their strengths and weaknesses with respect to 
supporting ESS.1 
 
Keywords: Evolvable software systems, Progressive 
Software Systems, network-based, work-centered, software 
development 

1.0. Introduction  
The United States Air Force (USAF), other US 
Government agencies, and many commercial organizations 
spend a great deal of time and money upgrading and 
managing enterprise software, adding new and enhanced 
functionality to keep the system relevant as the work 
environment and requirements change. The substantial 
initial investment in enterprise software underscores the 
importance of extending the useful life of custom software 
systems. It is not practical to refactor or reengineer entire 
fielded systems due to time, cost, and other constraints. 
However, integrating a mechanism that enables software to 
be modularly modified in the field may be a practical way 
to extend system usability and lifetime by allowing the 
software to continually adapt to changing work needs and 
requirements. In some cases, the software is programmed 
to evolve dynamically, often autonomously. Various 
terminology exists to describe such systems, generically 
referred to as Evolvable Software Systems (ESS) [1]. 
 
Features and capabilities supporting an ESS must be 
explicitly programmed into the system. However, ESS is 
the realization of a concept, not a technology or software 
design methodology. Implementation of ESS is achieved 
using a collection of technologies integrated into a software 
system. The result is a system capable of keeping up with 
the changes in work as it evolves. This paper categorizes 
contemporary technology options that could be used in the 

                                                 
1 Paper cleared for public release AFRL-WS 06-0442 

practical development of Evolvable Software Systems, and 
comments on their role in ESS design. The categorization 
will be helpful in guiding the selection of appropriate 
technologies as ESS-capable applications are implemented. 

2.0. Background  
Unlike most desktop applications, where data is locally 
available and accessed by an individual user, contemporary 
enterprise applications often involve collaborative work 
and frequently require access to information distributed 
across remote locations. These applications are being 
developed to take advantage of networking capabilities in 
order to access remote data and promote collaboration 
within the work environment. 
 
The US Air Force understands the advantages of deploying 
fully integrated, networked, enterprise-wide command and 
control (C2) applications. In this net-centric vision, various 
systems and devices, such as satellites, aircraft, PDAs, 
laptops, and existing C2 systems fully collaborate, forming 
the basis of new USAF enterprise applications. The 
inclusion of ESS concepts also adds value to these new 
systems. In addition, components used by ESS directly take 
advantage of net-centric concepts and help further extend 
the capabilities of a software application.  
 
ESS concepts are supported by not only large frameworks, 
but also a variety of networking technologies. It would be 
futile to try to assess every technology to determine its 
applicability to ESS, and even when the list is narrowed to 
just network-based technologies there are still many to 
choose from. This paper strives to show a mechanism for 
categorizing potential ESS technologies. A small sample of 
specific technologies is chosen to demonstrate the 
categorization scheme, providing an example so others will 
be able to select appropriate new technologies when 
designing ESS-based applications.  

3.0. Categorizing the Technologies 
The development of Evolvable Software Systems is not 
about using a specific type of programming language or 
technology, but deals with the concept of creating software 
that is useful longer than typical software, adapting to the 
changing requirements in functionality and work. 
However, just because ESS does not specify a certain 
technology doesn't mean all technologies will work equally 
well in designing such a system. An assortment of 
technologies was examined to find out which features 



might best support the creation and maintenance of an ESS, 
and how that support is provided.  
 
With so many technologies available, a categorizing 
scheme is needed to help differentiate the technologies and 
indicate how they assist the needs of an ESS. The 
technologies were divided into framework, architecture, 
communication, and support. To help understand how each 
of these levels supports ESS, the main components of ESS 
(self-maintaining, self-testing, and evolve-ability [1]) were 
identified with the categories they were most likely to 
support. These assignments are not absolute, but some 
technologies seem to match certain ESS requirements 
better than others. The categorization is shown in Table 1. 
  
The first category, framework, contains technologies that 
contribute to the maintenance and evolve-ability of the 
system. Maintaining an ESS from a framework standpoint 
can be easily achieved as long as the framework is well 
structured. Also, in order to incorporate evolve-ability into 
an ESS the framework has to be structured to handle 
evolutionary changes to the system. The framework 
technologies create high-level views of the overall system 
architecture and outline the key interfaces and structure of 
the software system. Such technologies include TBone and 
ConstellationNet. Frameworks describe the system without 
designating specific programming languages or committing 
to specific computing technologies. 
 
The second category, architecture, touches on all of the 
ESS components, testing, maintainability, and evolving. 
Architecture technologies can help with testing of the 
systems by enabling creation of benchmark tests and 
establishing system metrics. The architecture, like 
framework, provides a definition for structuring a system, 
which helps with the ability to maintain and evolve the 
ESS. This category provides a deeper view of the software 
system and is where more fine-tuned details are defined for 
specific ESS software. Depending on the features and 
capabilities needed for the system, specific types of 
architectures are determined and described. Some of the 
technologies in this category include CORBA, AJAX, and 
Macromedia. Selection of these technologies begins to 
limit other design and implementation options, such as 
choice of programming languages. Technology decisions 
here also guide hardware platform and operating system 
selection. AJAX, for instance, is generally used for online 
web applications, whereas CORBA has a reputation for 
being used in developing desktop applications (although it 
is now used for enterprise applications as well).  
 
The third category, communication, supports ESS with 
testing and maintaining. Networking is dependent on its 
ability to communicate with other systems, and therefore 
must also have ways to test communication status within 
an ESS. There is also a need to maintain appropriate 
communication requirements to ensure ESS availability. 
These technologies tend to focus on providing reliable 
communications and data messaging services. Data 

messages may include information used within the 
application, or metadata to monitor the application’s status. 
 
The final category, support, is for technologies that fit into 
multiple aspects of ESS, providing low-level assistance. 
This category includes technologies that transfer data 
within the system as well as communicating with other 
systems. Part of that communication deals with using 
common data formats and transformations to promote 
interoperability. When deciding upon technologies at this 
level, common interfaces and data formatting are primary 
considerations. Various standards exist for using common 
formats, such as XML.  

4.0. Technology Discussion 
The following sections and subsections discuss the specific 
technologies from Table 1 in more detail. 

4.1. Framework Technologies  
The framework technologies in Table 1 include TBone and 
ConstellationNet, but could also be expanded to include 
similar frameworks. These frameworks help to define the 
high-level ESS architecture without fully committing to 
programming languages and message formats.  

4.1.1. TBone 
The vision of the Theater Battle Operations Net-centric 
Environment (TBone) is to "Create dynamic planning, 
execution, and assessment capability that links requests, 
effects, operational guidance, and supporting tasks within a 
temporal and geospatial unified database environment.” [2] 
TBone advances collaborative planning and supports all 
Air Operations Center (AOC) processes such as strategy, 
targeting, planning, execution, and assessment.  
 
TBone aims to provide a single resource that is dynamic 
and event-driven, and promotes temporal, geospatial, and 
nodally linked visualizations. It is also scaleable from a 
single point laptop to an enterprise environment. TBone is 

Table 1. Categorization scheme for the various 
technologies that can be used to develop an ESS. 

Categories  Technologies  
• Framework  
• Maintaining  
• Evolving  

• TBone  
• ConstellationNet  

• Architecture  
• Testing  
• Maintaining  
• Evolving  

• CORBA  
• AJAX  
• Macromedia  

• Communication  
• Testing  
• Maintaining  

• Java – RMI   
• RPC  
• HLA / DIS  

• Support 
• all categories 

• XML 
• XML XUL 
• Java Applets (WAR) 
• Java EJB 



intended to be intuitive and interactive, and produces a 
common look and feel for user content. 
 
TBone replaces older systems with new state-of-the-art 
technologies such as XML-enabled database, and uses 
network architecture. This architecture remains consistent 
with tools used in the systems it is replacing: it provides 
web services for third party applications, is not proprietary, 
and has been built net-centric from the ground-up. The 
TBone framework design fits well into the ESS concept 
because it strives to handle changes that occur in the work. 
TBone could thrive as an ESS framework because of its 
ability to define and communicate the system’s 
architectural definition. 

4.1.2. ConstellationNet 
ConstellationNet (C2 Constellation) is a communications 
network overlooking the air, space, and ground allowing a 
free flow of information to be rapidly accessible to the 
users (for the USAF, the warfighters) at the right time and 
right place [3]. ConstellationNet allows users a mechanism 
to access a globally distributed common knowledge base of 
shared information, providing a consistent level of 
understanding and situational awareness between all users. 
ConstellationNet was created to assist the Air Force in 
building a network-centric, peer-based system of systems, 
which can operate in a seamless and fully interoperable 
framework. ConstellationNet takes a two-tiered approach; 
the top tier defines C4ISR enterprise integration and at the 
bottom tier solves near term, quick turnaround integration 
solutions for the USAF.  
 
ConstellationNet eliminates stovepipe system implementa-
tions by providing decisive information superiority, 
collaborative planning, and synchronized operations for 
users. It exploits advances in open systems architecture, 
information processing, expanded bandwidth, and sensor 
technologies. It is a subset of the USAF Enterprise 
Architecture, following the precepts established by Joint 
(DoD-wide) Architecture. ConstellationNet supports ESS 
by helping various systems work together flexibly. 

4.2. Architecture Technologies  

Architecture technologies represented in Table 1 include 
CORBA, AJAX, and Macromedia. These help to establish 
the functional details of the ESS. 

4.2.1. CORBA 
The Common Object Request Broker Architecture 
(CORBA) is a part of Object Management Group's (OMG) 
open, vendor-independent architecture and infrastructure 
that computer applications use to work together over 
networks [4]. CORBA achieves interoperability through 
use of the OMG Interface Definition Language (OMG 
IDL) and the standardized protocols GIOP and IIOP. With 
these, a CORBA-based program from almost any vendor, 
computer, operating system, programming language, or 
network can interoperate with another CORBA-based 
program across similar or different platforms.  
 

One benefit of CORBA is the ability to quickly generate 
interoperable code, allowing applications to be deployed 
rapidly. CORBA has a better architecture than traditional 
software due to the applications being designed around 
discrete services. The architecture divides applications into 
modules or object groups based on functionality. The IDL 
interface definition is independent of the programming 
language used, and maps to all of the popular programming 
languages via OMG standards. The learning curve for 
CORBA and its standards (such as IDL) can be steep, and 
using IDL for a programming language that isn't supported 
can be labor-intensive. Fortunately, most languages are 
covered, including C, C++, Java, COBOL, Smalltalk, Ada, 
Lisp, Python, and IDLscript. Using automated tools to map 
IDL to language creates code stubs based on the interface, 
but some of these tools may not integrate new changes with 
existing code well [4]. Also, CORBA does not support the 
transfer of code or objects. Some of CORBA's 
specifications are still in a state of flux so continuing 
training is to be expected.  
 
CORBA is a great choice for enterprise development 
because of its ability to integrate different machine 
hardware architectures, such as mainframes, desktops, 
minis, handhelds, and embedded systems. Within a server 
it is able to handle a large number off clients, at high 
throughput, with high reliability, leading to its extensive 
use for web sites. CORBA’s modular design allows 
different modules to be transitioned for work support tasks. 
This capability fits well into the ESS concept. 

4.2.2. AJAX 

Asynchronous JavaScript and XML (AJAX) is a method 
for building interactive web applications that have a fast 
interactive desktop feel. AJAX itself is not a technology, 
but a development approach using existing technologies to 
create a specific effect. AJAX generally combines several 
programming tools: JavaScript, dynamic HTML 
(DHTML), Extensible Markup Language (XML), 
cascading style sheets (CSS), the Document Object Model 
(DOM), and the XMLHttpRequest object [5].  
 
Traditional internet-based applications generate events 
when the user clicks buttons or makes other selections. 
These events trigger communications back to the server, 
and the user is forced to wait as results are fetched and the 
page is reloaded. With AJAX techniques, these server calls 
are performed asynchronously; the page doesn’t have to 
reload when the server call returns. This significantly 
reduces the time the user has to wait for information and 
actions to occur. AJAX improves the user experience, 
making internet application behave more responsively, like 
desktop applications. (This can also be a downfall since 
many users will not be expecting this style of interaction, 
and may not realize the page has been updated. Developers 
must take this into account and give visual feedback to the 
user as event actions are occurring.) 
 
AJAX is still a new way to create web applications, and 
with new territory comes risks. AJAX techniques rely on 



browser support for the XMLHttpRequest object. Although 
most modern browsers have this support, some security 
settings may disable the support. Therefore, AJAX-based 
applications meant to be used by the general public needs 
to have a fallback option when XMLHttpRequest support 
is not available. Another concern is how AJAX "breaks" 
the back button: when the page is updated asynchronously 
the URL in the browser does not change, and browser 
history isn’t affected. One technique developed to correct 
this problem is to create an artificial history that rewrites 
the URL in the browser with information telling how this 
page was created, so the back button would work as 
expected. Yet another drawback for AJAX is there is no 
guarantee that XMLHttpRequest events will be completed 
in the order they were dispatched, so applications must be 
designed to handle this accordingly.  
 
AJAX does not have to strictly use JavaScript and other 
programming tools mentioned here: it can be integrated 
with PHP and other utilities as needed, taking advantage of 
web standards so that cross-browser viewing will yield 
common results. AJAX concepts, such as asynchronous 
server calls and page updates without reloading, give the 
user a responsive “local desktop application” experience. 
This makes AJAX a great tool for ESS applications 
executed over the network. 

4.2.3. Macromedia 
Macromedia consists of a web-based suite of software, 
providing a way to create Rich Internet Applications 
(RIA). This suite consists of Macromedia Flex, Flash, 
ColdFusion, and Flash Remoting. Other Macromedia 
products can be used in conjunction with these, but these 
four are the mainstay. Although the suite acts as an entire 
framework, architecture and communication solution when 
used together, each component has its own strength. 
 
Flex is the presentation tier for RIA. There are four key 
benefits that allow Flex to help developers build and 
deploy more effective applications: improved data display 
and visualizations, more versatile skinning and styling, 
multiplatform deployment options, and enhanced 
performance. Flex makes use of technologies such as 
MXML and ActionScript, and has class libraries to interact 
with J2EE and .NET. Flex uses a standards-based 
architecture that is able to compliment current enterprise 
developer tools, methodologies, and design patterns. Flex 
makes it possible to give web applications a desktop-
application feel by providing immediate responses and 
smooth transitions between screens and displays. When 
Flex is executed within the Flash player, the application 
can interact with server-side functionality, such as Java 
objects, SOAP web services, and other services.  
 
Macromedia Flash is an authoring tool enabling designers 
and developers to generate presentations, applications, and 
other interactive content. Flash projects can contain simple 
animations and video, complex presentations, and 
everything in between. Interactivity is programmed with 
ActionScript, a proprietary language syntactically similar 

to JavaScript, but movie-centric rather than browser-
centric. Using Flash on the web works well because it 
compresses content into very small files. This is achieved 
by using vector graphic technology. It is also able to make 
use of common graphics files in presentations, such as GIF, 
JPG, and AVI. Flash presentations are viewable in a stand-
alone Flash player or with a Flash-enabled internet browser 
using a plug-in. Both of these options are available for free 
for a variety of major browsers and operating systems. 
  
ColdFusion is the underlying architecture for creating RIA 
with Macromedia, allowing for production and delivery of 
products more quickly than applications created in C++ 
and other high-level programming languages. ColdFusion 
uses CFML, a markup language based on HTML, and has a 
shallow learning curve for those already familiar with 
HTML. ColdFusion has powerful support capabilities that 
help integrate structured business reporting within web 
applications. It can also be used to create instant messaging 
(IM) applications by leveraging IM presence services, 
which identify when specific users are online.  
 
Flash Remoting is the connection between Flash and the 
web application server. It has a powerful yet simple 
programming model that can easily be integrated with 
Flash content in applications using ColdFusion, Microsoft 
.NET, Java, and SOAP-based web services. Flash 
Remoting provides easy access to business logic. It 
accesses XML documents and web services using 
ActionScript, and provides a communications interface to 
other Macromedia products so data can be easily 
transmitted to different areas.  
 
The main drawbacks to the Macromedia suite are the 
expense and a potentially steep learning curve for users 
who are unfamiliar with the proprietary languages the suite 
uses. Once mastered, these programming languages allow 
for changes to be implemented quickly, though it is unclear 
if the capabilities would support dynamic changes. ESS 
features could be implemented using Macromedia-based 
web services. 

4.3. Communication Technologies  

The communication technologies examined are Java RMI, 
RPC, HLA and DIS. These technologies wouldn’t typically 
be used to directly establish an ESS, but are useful in the 
overall design, since communication is a critical function.  

4.3.1. Java Remote Method Invocation (RMI) 
Java Remote Method Invocation (Java RMI) is used by 
programmers to create communications links among Java-
based applications, allowing methods of remote Java 
objects to be invoked from other Java virtual machines. 
RMI uses object serialization to keep track of parameters 
and does not truncate types, supporting true object-oriented 
polymorphism [6]. The RMIRegistry component tracks 
distributed objects, so persistent connections are 
maintained between clients and servers residing on 
different machines and processes. The server defines 
objects for remote client access via RMI setup. Clients use 



these objects as if they are local objects running in the 
same virtual machines. The client RMI keeps the 
underlying mechanisms of transporting method arguments 
hidden, returning values across the network.  
 
Since RMI is tightly coupled with the Java language there 
is no need for separate IDL mappings to control invocation 
of remote object methods. However, using RMI applets on 
the internet is impractical because of the instability of the 
internet and lack of client support. There are also security 
threats due to remote code execution and limitations on 
functionality enforced by security restrictions. Java RMI is 
limited by interoperability only with other Java systems. 
RMI by itself does have capabilities that could help in 
creating an ESS, but is a much more useful tool when 
coupled with Java Enterprise Java Beans (EJB). 

4.3.2. Remote Procedure Call (RPC) 

Remote Procedure Calls (RPC) is a technique for 
constructing distributed, client-server based applications. It 
uses the notion of conventional local procedure calls, so the 
called procedure need not exist in the same address space 
as the calling procedure [7].  
 
XML-RPC is a specification and a set of implementations 
that extend RPC to allow procedure calls to be made over 
the Internet to machines with potentially different 
execution environments and operating systems. This makes 
use of HTTP as the transport and XML as the encoding. 
XML-RPC was designed to be simple, but also be powerful 
enough to allow complex data structures to be transmitted, 
processed, and returned. One benefit of using RPC is its 
ability to hide the network code within the stub procedures. 
Generally RPC-based programs are easy to learn and can 
be implemented in a number of languages and formats such 
as XML, Java, C, C++, Perl, and Python. RPC calls are 
made synchronously so the program has to wait for the 
response before moving ahead. Within an RPC program 
only one transport can be used (TCP/IP). An enterprise 
network with several connections may have trouble at 
times because every simultaneous active RPC connection 
requires its own distinct connection. RPC does not always 
have ways of communicating with older legacy systems 
due to different paradigms. This may limit its value to ESS 
developers. 

4.3.3. High Level Architecture (HLA) 
High Level Architecture (HLA) is a general-purpose 
protocol for managing distributed computer simulation 
systems, enabling communications between computer 
simulations regardless of their computing platform [8]. 
HLA is able to achieve interoperability through its ability 
to publish and subscribe to attributes and interactions. 
Communication is managed by its Runtime Infrastructure 
(RTI). The Interface Specification document defines how 
HLA-compliant simulators interact with the RTI, and the 
Object Model Template (OMT) specifies what information 
is communicated between simulations and how it is 
documented [9]. HLA simulations must obey published 
HLA rules in order to be compliant with the HLA standard. 

 HLA doesn't have to be used with simulated data: it can 
manage real-time data. This makes HLA valuable in an 
ESS by giving users a forecasting mechanism within a 
simulation by using actual data. Third-party RTI vendors 
provide APIs in C++ and Java, but an RTI can also be 
custom-built to meet the needs of the specific situation. 

4.3.4. Distributed Interactive Simulation(DIS) 
Distributed Interactive Simulation (DIS) is a standard for 
conducting real-time platform-level war-gaming across 
multiple host computers. The design concept of DIS is that 
each simulator node is autonomous and simulates a single 
battlespace entity, or a group of entities in the case of semi-
automated forces (SAFOR) systems. DIS uses a distributed 
concept of simulation in a similar fashion to HLA; each 
node in the configuration supplies all the resources 
necessary for its own processing, and has its own 
responsibilities. These include communicating changes in 
the entity's state, responding to user inputs, modifying 
entity state, maintaining a local view of the battlespace 
environment (including all non-node entities), updating the 
view, and presenting the user with a view consistent with 
the state of the entity and the battlespace environment.  
 
DIS does not need a centralized computer to manage the 
interaction detection and resolution. This helps prevent 
single-point failures from disrupting the overall exercise or 
mission supported by a DIS configuration. Like HLA, DIS 
can be useful within an ESS by allowing users to forecast 
data, and sharing these forecasts with other individuals by 
using distributed capabilities. 

4.4. Support Technologies  

The support technologies that have been reviewed are 
XML, XUL, Java Applet Web Archives (WAR), and 
Enterprise JavaBeans (EJB). These technologies may not 
directly help in development of an ESS, but they provide 
ways to create a good software system, and are able to 
support other technologies. 

4.4.1. Extensible Markup Language (XML) 
Extensible Markup Language (XML) is a simple and 
flexible text-based format derived from SGML. XML is 
used to exchange a wide variety of data on the web and 
between applications. One XML utility is the Extensible 
Stylesheet Language (XSL), a family of recommendations 
defining XML document transformations and 
presentations. This is accomplished through three parts: the 
XSL Transformation (XSLT) language translates between 
formats, XML Path Language (XPath) is an expression 
language used by XSLT to access or refer to parts of an 
XML document, and the XML Formatting Objects (XSL-
FO), is an XML vocabulary for specifying formatting 
semantics [10]. 
 
An XSLT stylesheet specifies the presentation of a class of 
XML documents by describing how an instance of the 
class is transformed into an XML document that uses a 
formatting vocabulary, such as XHTML or XSL-FO. XML 
validators parse XML and ensure the code is well-formed. 



This structure allows XML documents to be generated 
efficiently from existing information. The documents are 
stored in plain text and can be edited or used by any 
platform or operating system. XML is also language 
independent, allowing it to work with heterogeneous 
systems. When interfacing with a non-XML-capable 
system, XSLT can transform the XML into HTML or plain 
text. XML’s extensibility allows developers to create 
custom tags for their own data formats, so web servers can 
pass application parameters and return values as XML.  
 
XML is still young in comparison to other formats, but is 
gaining popularity. Browser support for XML is not 
completely standardized, but this can easily be overcome 
by using server-side technologies to handle XML before it 
gets to the browser. Since XML is in plain text, file sizes 
are typically larger than binary formats, but as network 
performance improves this will become less of an issue.  
XML would be useful as a protocol for data exchange in 
ESS. Using different stylesheets, XML can be transformed 
into many different layouts depending on the need. 

4.4.2. XML User Interface Language (XUL) 
XML User Interface Language (XUL) is a markup 
language, like XML and HTML, that can be used for 
creating dynamic user interfaces. Since it is platform-
agnostic, XUL can be used to create applications on 
Windows, Macintosh, or Linux. XUL is based on XML, so 
it inherits XML's standards and capabilities: XSLT, XPath, 
and DOM functions can manipulate the user interface. 
Even though these technologies are not individually very 
powerful they can be combined to create interfaces for full 
fledged applications, such as the Mozilla Firefox browser 
and Mozilla Thunderbird email client. XUL can also be 
used to create stand-alone applications or installed as a 
browser extension. These extensions modify existing 
browser behavior and graphical interfaces. For example, 
XUL can make modifications to the menu structure, or 
simply change the look of "Back," "Forward," and 
"Refresh" buttons within the browser. XUL is a part of 
Gecko engine used in many Web browsers. Gecko supports 
various Web Services technologies such as XML-RPC, 
SOAP, and WSDL.   
 
Having XUL based on standards such as XML allows it to 
easily work across browsers and operating systems. These 
web-based languages are also much easier to learn than 
standard programming languages such as C++. Using XUL 
to develop web applications as extensions is much easier 
than creating stand-alone applications. XUL has great 
flexibility for being used on web sites because it can make 
use of server-side architectures such as PHP and JSP to 
display dynamic content [12]. Its overall flexibility allows 
Gecko to be a two- or three-tier application model 
depending on the needs of developers. XUL makes use of 
existing standards, but XUL itself is not yet a standard. (It 
has been submitted for approval.) Other drawbacks of the 
current state of XUL are that creating stand-alone 
applications with XUL can be tricky, but progress being 
made to simplify this process.  

When installing, or uninstalling XUL extensions, the 
browser must be restarted for the changes to take effect. 
Even so, this ability to add extensions so easily makes it a 
great tool for ESS. An assortment of extensions can be 
created to supplement user's work in different ways; the 
users have the choice of which extensions they want to use, 
and can remove them later when desired. Since the XUL 
code is based in XML, the code can be updated easily to 
make adjustments for changing work requirements, 
reducing the development cycle for any necessary changes 
to the application. 

4.4.3. Java Applet Web Archive (WAR) 
Java Applet Web Archive (WAR) files allow Java 2 
Platform, Enterprise Edition (J2EE) Web modules that 
include Java Servlets and JavaScript Pages (JSP) to be 
packaged together with the application, associated files, 
and a required XML deployment descriptor file. J2EE 
WAR applications include client components consisting of 
dynamic web pages, applets, and a web browser for the 
client machine. The web components include servlets and 
JSP, running within the browser. Business component 
modules implement a particular enterprise domain, and 
enterprise infrastructure software runs on legacy machines.   
 
WAR files have the same format as JAR files, but also 
include a deployment descriptor file within the JAR. Each 
WAR file contains the servlets and JSP along with related 
resource files. The web components tier in the Access 
Manager model can be customized to meet the needs of an 
organization. WAR files allow for an easy way to make 
updates to the system, providing new functionality. This 
makes the Java Web Archive a good tool for an ESS. 

4.4.4. Enterprise Java Beans (EJB) 
Java's Enterprise JavaBeans (EJB) technology is a server-
side component architecture for the Java 2 Platform. EJB 
enables rapid and simplified development of distributed, 
transactional, secure, and portable applications based on 
Java technology [13]. EJB development encapsulates 
business logic in a component framework that manages the 
details of security, transaction, and state management.  
 
EJBs come in three varieties: an entity bean has persistent 
data with a specific bean representing database record 
information, a session bean simply provides a service and 
no data, and a message-driven bean provides a simple 
method of asynchronous communication (rather than using 
Java Message Services (JMS)). Java's practice of "write 
once, run anywhere" holds true for EJB as well, and works 
on most operating systems.  
 
EJBs make is possible to build distributed applications by 
combining bean components from different vendors. This 
flexibility promotes ESS generation by offering 
programmers a variety of development components. EJB 
applications are easier to write because developers don't 
have to deal with low-level details of transactions, state 
management, multi-threading, or resource pooling. It also 
allows experts to gain low-level access through APIs. 



Buying commercial EJB containers can be expensive. 
Using them can also create large and complicated 
specifications and increase development time when 
compared to straight Java programming, but the beans are 
reusable for future projects. EJB limitations include lack of 
support for local files, limited GUI support, no capability 
to act as a network server. Nevertheless, EJB modularity 
may make EJB technology useful for ESS. 

5.0. Impact of Technology Selection 
The classification scheme is not intended to be a strict code 
for selecting technologies, but should be looked upon as a 
set of guidelines for choosing the foundations of the 
enterprise application. Even within this classification, the 
survey of technologies presented clearly demonstrates that 
not all options are equally suitable for the development of 
ESS applications. Some of these, such as XML, RPC, and 
HLA seem to have characteristics allowing them to serve 
best in a support role. Others, such as XUL, AJAX, and 
TBone, offer structure to the ESS architecture. Regardless 
of the specific system, classification should be useful for 
selecting frameworks, architectures, communications, and 
support components as the system design solidifies.  
 
The goal of an ESS is to be able to evolve as a user’s needs 
change due to the changing nature of the work. 
Technologies directly supporting this ability to evolve will 
offer the best immediate value to the development team, 
and ultimately to the end user. This inherent adaptability 
separates ESS from typical contemporary software 
systems. ESS software maintenance and testability issues 
are probably not as central to the initial selection of 
technologies, but must be considered early in the software 
design. Essentially, a technology is beneficial in the 
development of an ESS if it is able to help, directly or 
indirectly, with making evolutionary changes to the 
system. Classification of technologies simplifies selection, 
with more well-defined options and fewer decision points. 

6.0. Conclusion  
A classification scheme has been introduced in an effort to 
compartmentalize the technologies that could be used to 
build ESS-based enterprise applications. Within each class, 
a number of technologies were surveyed, with a brief 
discussion of strengths and weaknesses with respect to 
their usability in ESS development. There are many more 
specific technologies than those presented here, but these 
are a representative cross-section for the research occurring 
in the Cognitive Systems branch at the Air Force Research 
Laboratory. 
 
This paper has divided technologies into four main 
categories to help identify the features they promote for 
effective ESS designs. The framework category focuses on 
software system structures for the high-level view of the 
system. The architecture category describes the details and 
underlying mechanics of the software system providing the 
heart of the ESS. The communications category contains 
technologies enabling the most effective ways to transmit 

between its local and remote systems. The support 
category concentrates on interoperable message formats 
and low-level support issues common to other categories. 
This classification scheme is expected to help identify 
appropriate components for implementing ESS. 
  
Continuing research in ESS will focus on the creation of 
ESS-based enterprise software, especially with respect to 
the selection of specific technology components suitable to 
software evolution. The technologies surveyed here are 
likely candidates to be used in this work. 
 
As software becomes network-integrated, we anticipate an 
increased interest in ESS concepts and practical 
implementation approaches. Evolvable software provides 
users with a powerful tool for accomplishing their work. 

References  

[1] Conrad, K.O., Schmidt, V.A. (2005). Progressive 
Software Systems: Dynamic Software for a Dynamic 
Workplace. Proceedings of the Ninth IASTED 
International Conference SEA, Nov. 14-16, 2005, 
Phoenix, AZ, USA.  

[2] AFC2ISRC (2005). Theater Battle Operations Net-
centric Environment (TBONE). 
http://www.afc2isrc.af.mil/tbone/.  

[3] Sweet, N., Kanefsky, S. (2004). The C2 Constellation 
A US Air Force Network Centric Warfare Program. 
Command and Control Research and Technology 
Symposium. San Diego, CA, June 15-17, 2004.  

[4] Object Management Group (2006). OMG 
Specifications and Process. 
http://www.omg.org/gettingstarted/.  

[5] McCarthy, P. (2005). Ajax for Java Developers: Build 
Dynamic Java Applications. Retrieved from IBM site: 
http://www-128.ibm.com/developerworks/library/j-
ajax1/?ca=dgr-lnxw01Ajax. 

[6] Reilly, D. (2000). Java RMI & CORBA: A Comparison 
of Two Competing Technologies. 
http://www.javacoffeebreak.com/articles/rmi_corba/.  

[7] Wikipedia (2005). Remote Procedure Call. 
http://en.wikipedia.org/wiki/Remote_procedure_call.  

[8] Dahmann, J.S., Fujimoto, R.M., Weatherly, R.M. 
(1997). The Department of Defense High Level 
Architecture. Proceedings of the 1997 Winter 
Simulation Conference. p.142-149.  

[9] Buss, A., Jackson, L. (1998). Distributed Simulation 
Modeling: A Comparison of HLA, CORBA, and RMI. 
Proceedings of the 1998 Winter Simulation Conference. 
p. 819-825.  

[10] W3C (2005). Extensible Markup Language (XML). 
World Wide Web Consortium (W3C) site: 
http://www.w3.org/XML/.  

[11] XULPlanet (2005). Welcome to XULPlanet. 
XULPlanet site: http://www.xulplanet.com/. 

[12] Hosanee, M. (2002). Manually Creating a Simple Web 
ARchive (WAR) File. Sun Microsystems site: 
http://access1.sun.com/techarticles/simple.WAR.html.  

[13] JavaBeans (2005). JavaBeans. Sun Developer 
Network site: http://java.sun.com/products/javabeans/. 


